PRINCIPLE:

N-Acetyl-p-Aminophenol + H₂O Arylamidase > p-Aminophenol + Acetate

CONDITIONS: $T = 37^{\circ}C$, pH = 9.0, A_{615nm} , Light path = 1 cm

METHOD: Colorimetric

REAGENTS:

- A. 100 mM Tris HCl Buffer, pH 9.0 at 37°C
 (Prepare 100 ml in deionized water using Trizma Base, Sigma Prod. No. T-1503. Adjust to pH 9.0 at 37°C with 1 M HCl.)
- B. 100 mM N-Acetyl-p-Aminophenol Solution (NAAP)(Prepare 50 ml in Reagent A using 4-Acetamidophenol, Sigma Prod. No. A-5000.)
- C. 5.0 mM p-Aminophenol Standard Solution (Std) (Prepare by dissolving 54.56 mg of p-Aminophenol, Sigma Prod. No. A-4076, in 80 ml of deionized water. Adjust the pH to 11.0 at 25°C with 0.1 M NaOH. The solution should be clear and purple at this point. Adjust the pH back to 9.0 using 0.1 M HCl. The color of the solution should turn brown. Quantitatively transfer to a 100 ml volumetric flask and dilute to 100 ml with deionized water. Protect the solution from light and use immediately after preparation.)
- D. 270 mM Ammonium Hydroxide Solution (NH₄OH) (Prepare 100 ml in deionized water using Ammonium Hydroxide, Sigma Prod. No. A-6899.)
- E. 1.28 mM Cupric Sulfate Solution (CuSO₄)
 (Prepare 100 ml in Reagent D using Cupric Sulfate, Pentahydrate, Sigma Prod. No. C-7631.)
- F. 0.41% (v/v) o-Cresol Solution (Prepare 48.2 ml by adding 0.2 ml of o-Cresol, Sigma Prod. No. C-7400 to 48 ml of deionized water. **PREPARE FRESH.**)

Revised: 12/21/94 Page 1 of 4

REAGENTS: (continued)

G. Color Reagent Solution (CRS)
 (Prepare 54.2 ml by adding 48.2 ml of Reagent F to 6 ml of Reagent E. Mix well. Prepare fresh and use within 30 minutes.)

H. Aryl Acylamidase Enzyme Solution (Immediately before use, prepare a solution containing approximately 0.13 - 0.25 unit/ml of Aryl Acylamidase in cold Reagent A.)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable containers:

	<u>Test</u>	_Blank		
Reagent A (Buffer) Reagent B (NAAP)	2.90	0.10 2.90		
Mix by swirling and equilibrate to 37°C. Then add:				
Reagent H (Enzyme Solution)	0.10			
Immediately mix by inversion and incubate at 37°C for exactly 10 minutes.				

Pipette (in milliliters) the following reagents into suitable containers:

Reagent G (CRS)	2.50	2.50
Test Mixture	1.00	
Blank Mixture		1.00

Mix by swirling and incubate at room temperature for exactly 5 minutes. Transfer the solutions to suitable cuvettes and record the A_{615nm} for the Test and Blank using a suitable spectrophotometer.

Standard Curve:

Prepare a standard curve by pipetting (in milliliters) the following reagents into suitable containers:

	Std 1	Std 2	Std 3	Std 4	Std 5	Std Blank
Reagent C (Std)	0.02	0.04	0.06	0.08	0.10	
Deionized Water	0.08	0.06	0.04	0.02		0.10
Reagent B (NAAP)	2.90	2.90	2.90	2.90	2.90	2.90

Revised: 12/21/94 Page 2 of 4

PROCEDURE: (continued)

Mix by swirling and incubate at 37°C for exactly 10 minutes.

Pipette (in milliliters) the following reagents into suitable containers:

	Std_1	Std 2	Std 3	Std 4	Std_5	Std Blank
Reagent G (CRS)	2.50	2.50	2.50	2.50	2.50	2.50
Std 1	1.00					
Std 2		1.00				
Std 3			1.00			
Std 4				1.00		
Std 5					1.00	
Blank						1.00

Mix by swirling and incubate at room temperature for exactly 5 minutes. Transfer the solutions to suitable cuvettes and record the A_{615nm} for the Standards and Standard Blank using a suitable spectrophotometer.

CALCULATIONS:

Standard Curve:

r A_{615nm} Standard = A_{615nm} Standard - A_{615nm} Standard Blank

Plot the r A_{615nm} Standard vs µmoles of p-Aminophenol.

Sample Determination:

r A_{615nm} Sample = A_{615nm} Test - A_{615nm} Test Blank.

Determine the µmoles of p-Aminophenol liberated using the Standard curve.

Units/ml enzyme =
$$\frac{(\mu \text{moles of p-Aminophenol released})(\text{df})}{(10)(0.1)}$$

df = Dilution factor

10 = Time (in minutes) of assay as per the Unit Definition

0.1 = Volume (in milliliter) of enzyme used in the assay

Units/mg solid =
$$\frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}$$

Revised: 12/21/94 Page 3 of 4

CALCULATIONS: (continued)

Units/mg protein =

units/ml enzyme

mg protein/ml enzyme

UNIT DEFINITION:

One unit will convert 1.0 μ mole of N-acetyl-p-aminophenol (acetaminophen) to p-aminophenol per minute at pH 9.0 at 37°C.

FINAL ASSAY CONCENTRATIONS:

In a 3.00 ml reaction mix, the final concentrations are 100 mM Tris, 97 mM N-acetyl-p-aminophenol, and 0.0125 - 0.025 unit aryl acylamidase.

REFERENCE:

Price, C.P., Hammond, P.M., and Scawen, M.D. (1983) Clinical Chemistry 29, 358-361

NOTES:

- 1. This assay is based on the cited reference.
- 2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

This procedure is for informational purposes. For a current copy of Sigma's quality control procedure contact our Technical Service Department.

Revised: 12/21/94 Page 4 of 4