LIET 151 2nd Exam 2010. 5. 15 Dept:	ID#: Name:
 Arrange the following atoms in order of increasing first ionization energy (smallest first): Ar, Cl, Cs, K < < < < < Arrange the following atoms in order of increasing size (smallest first): Cl, F, P, S 	6.(a) A piston performs work of 210 L atm on the surroundings, while the cylinder in which it is placed expands from 10 L to 25 L. At the same time, 45 J of hea is transferred from the surroundings to the system. Against what pressure was the piston working?
< < < <	
3. List the ionic species that are isoelectronic with Ar and have net charge (absolute values) with $Z \leq 20$. Arrange these in order of increasing size (smallest first).	(b) A sample of an ideal gas at 15.0 atm and 10.0 L is allowed to expand against a constant external pressure of 2.00 atm at a constant temperature. Calculate the work (kJ) for the gas expansion.
4. Light with a wavelength of 2.50×10^{-7} m falls on the surface of a piece of chromium in an evacuated glass tube. If the binding energy of electrons to the metal surface is 7.21×10^{-19} , determine	
(a) the maximum kinetic energy (J) of the emitted electrons	7. A hot-air-ballon is filled with air to a volume of $4.00 \times 10^{\circ}$ m ³ at 745 torr and 21°C. The air in the ballon is then heated to 62 °C, causing the ballon to expanded to a volume of 4.20×10^{3} m ³ . What is the ratio of the number of moles of air in the heated ballon to the original number of moles of air in the ballon? (Hint: Opening in the ballon allow air to flow in and out. Thus the pressure in the ballon is always
(b) the speed (m s ⁻¹) of electrons that have this maximum kinetic energy.	the same as that of the atmosphere).
5. Suppose an atom in an excited state can return to the ground state in two steps. It fist falls to an intermediate state, emitting radiation of wavelength $\lambda 1$, and then to the ground state, emitting radiation of wavelength $\lambda 2$. The same atom can also return to the ground state in one step, with the emission of radiation of wavelength $\lambda 3$. (a) How are $\lambda 1$, $\lambda 2$, and $\lambda 3$ related?	8. Consider a sample of a hydrocarbon (a compound consisting of only carbon and hydrogen) at 0.959 atm and 298 K. Upon combusting the entire sample in oxygen, you collect a mixture of gaseous carbon dioxide and water vapor at 1.51 atm and 375 K. The mixture has a density of 1.391 g/L and occupies a volume four times as large as 舍 of the pure hydrocarbon. Determine the molecular formula of the hydrocarbon.
(b) How are the frequencies of the three radiations (v1, v2, and v3 for $\lambda 1$, $\lambda 2$, and $\lambda 3$, respectively)	

LIET 151 2nd Exam 2010. 5. 15 Dept:	ID#: Name:
9. A ballon filled with 39.1 mol helium has a volume of 876 L at 0.0 °C and 1.00 atm. The temperature of the ballon is increased to 38.0 °C as it expands to a volume of 998 L, the pressure remaining constant. Calculate q, w, ΔE for the helium in the ballon. The molar heat capacity for helium gas is 20.8 J/°C·mol. (a) q (kJ)	 12. The following are hypothetical configurations for a beryllium atom. (1) 1s³ 2s¹ (2) 1s¹ 2s³ (3) 1s¹ 2p³ (4) 1s² 2s¹ 2p¹ (5) 1s² 2s² (6) 1s² 1p² (a) Which are forbidden by the Pauli principle? (b) Which are excited states?
(b) w (kJ) (c) ΔЕ (kJ)	 (c) Which are the ground-state 13. Write the complete electron configuration, and list a correct set of values of the quantum numbers for each of valence electrons in the ground-state configuration of F and Mg. (a) F (b) Mg
10. In a coffee-cup calorimeter, 100.0 mL of 1.0 M NaOH and 100 mL of 1.0M HCl are mixed. Both solutions were originally at 24.6 °C. After the reaction, the final temperature is 31.3 °C. Assuming that all the solutions have a density of 1.0g/cm ³ and a specific heat capacity of 4.18 J/°C·g, calculate the enthalpy change (ΔH, kJ/mol) for the neutralization of HCl by NaOH. Assume that no heat is lost to the surrounding or to the calorimter.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
11. Does more heat have to be removed from an automobile engine when it burns one gram of gasoline while idling in a traffic jam or when it burns one gram of gasoline while accelerating? Explain in terms of ΔE, q, and w.	 (b) Cr³⁺ [Ar] 4s → 3d → A → A → A → A → A → A → A → A → A →