LIET151 1st Exam 2010. 4. 10 Department	: ID:	Name :		
 How many significant figures are in each of the following? (2 points) (a) 0.0000101 [] (b) 22.04030 [] (c) 0.00480 [] Perform the following mathematical operations, and express each result to the correct number of the significant figures. (4 points) a. (9.04 -8.23 + 21.954 + 81.0) / 3.1416 	8. A white powder is a phosphorus and 56.36 a molar mass of 283.88 empirical and molecular	analyzed and found to contain 43.64 % % oxygen by mass. The compound has 8 g/mol. What are the compound's c formulas? (5 points)		
 b. (3.14159)(4.599×10⁶) - (1.12×10⁷) (4.756×10⁸) + (3.67×10⁴) 3. Give the systematic name of each of the following compounds. (6 points) (a) Fe(NO₃)₃ (b) Ti(NO₃)₄ (c) P₄O₁₀ (d) NaOCl (e) BaCrO₄ (f) S₄N₄ 	9. The element europiu ¹⁵¹ Eu has a mass of 1 152.9209 amu . The av 151.96 amu. Calculate europium isotopes. (5 p	um exists in nature as two isotopes. : 50.9196 amu, and ¹⁵³ Eu has a mass of rerage atomic mass of europium is the relative abundance of the two points)		
 4. Write the formula for each of the following compounds. (3 points) (a) Copper(II) nitrate (b) Nitrous acid (c) diphosphorus pentoxide 5. Balance the following chemical reaction, which illustrates the synthesis of an important industrial chemical. (2 points) 	10. The element magner with the following mass average atomic mass of points) Isotope ²⁴ Mg ²⁵ Mg ²⁶ Mg	esium (Mg) has three stable isotopes ses and abundances: Calculate the f magnesium from these data. (5 <u>Mass (g/mol)</u> Abundance (%) 23.9850 78.99 24.9858 10.00 25.9826 11.01		
 Al₂O₃ •2H₂O (s) + _ H₂SO₄ (sq) ⇒ _ Al₂(SO₄)₃ (s) + _ H₂O (s) 6. A silicon chip used in an integrated circuit of microcomputer has a mass of 5.68 mg. How many silcon (Si) atoms are present in the chip? (5 points) 	11. From the following for the metals Pt, Zn, a 1. $Pt^{+2} + Fe_{(s)}$ 2. $Pt^{+2} + Zn_{(s)}$ 3. $Zn_{(s)} + Fe^{+2}$	information derive an activity series and Fe. (3 points) $\Rightarrow Pt_{(s)} + Fe^{+2}$ $\Rightarrow Pt_{(s)} + Zn^{+2}$ $^2 \Rightarrow Fe_{(s)} + Zn^{+2}$		
7. A mole of helium gas contains 6.02×10^{23} helium atoms. How many helium atoms are there in a micromole of helium? How many moles of helium does 1.25×10^{20} atoms of helium represent ? (5 points)	12. Iron is made from the smelting of iron ore. That is to say the reaction of Fe_2O_3 at elevated temperatures with coke $(C_{(s)})$ to make $CO_{2(g)}$ and $Fe_{(l)}$. Write the balanced chemical equation for this reaction and tell what elements are being oxidized and which are being reduced. (5 points)			

LIET151 1st Exam	2010. 4. 10	Department	:	ID:	Name :
 13. The following unbalance process" for the synthesis 5 H₂SO₄ + Ca₅F(PO₄)₃ ⇒ 3. If treatment of 5.0 x 10³ k₄ sulfuric acid gives 2.72 x is the % yield of the process. 	ed reaction summariz s of phosphoric acid. H ₃ PO ₄ + 5 CaSO ₄ + g of Ca ₅ F(PO ₄) ₃ with 10 ³ kg of phosphori cess? (10 points)	es the "wet HF excess c acid, what	 16. Hydra. (NH₃) with 420 kg of generate 3 this reacti 2 NH₃ + (10 points) 	zine (N ₂ H ₄) is 1 hypochlorite ammonia is 315 kg of hy- on? OCl ⁻ ⇒ N ₂)	s made by the reaction of ammonia e (OCl-). Given the following equation reacted with excess hypochlorite to drazine. What is the percent yield for ₂ H ₄ + Cl ⁻ + H ₂ O
14. A 1.23 g sample which oxides is treated with con all the metals and metal of gold. The mass of yellow The solution is then treat which precipitates AgCl g of AgCl is obtained. Wh in this ore? (10 points)	contains gold, silver acentrated HNO ₃ which oxides with the exce metal remaining is 7 red with aqueous sod and nothing else. A the nat is the percent go	and metal ch dissolves ption of the 7.4 x 10 ⁻² g. ium chloride cotal of 0.196 ld and silver	17. A stud in titration sample of mass was 0.15 mL. reading was solution.	dent prepared is. The soluti potassium hy 0.7996 g. Be When the ind as 43.75 mL. (10 points)	l 1.00 L of a solution of NaOH for use ion was standardized by titrating a ydrogen phthalate (KHC ₈ H ₄ O ₄) whose efore titration, the buret reading was licator changed color, the buret Calculate the molarity of the NaOH
15. Determine the chemica composition of the followin points)	l formula and elemen g compound (MM (g/	tal % mol) (10	$\begin{array}{l} ********* \\ \text{He} &= 4.003 \\ \text{H} &= 1.01 \\ \text{C} &= 12.01 \\ \text{N} &= 14.01 \\ \text{O} &= 16.00 \\ \text{F} &= 19.00 \\ \text{Na} &= 23.0 \\ \text{Si} &= 28.09 \\ \text{P} &= 30.97 \\ \text{S} &= 32.07 \\ \text{Cl} &= 35.45 \\ \text{Ca} &= 40.08 \\ \text{Au} &= 197.0 \\ \text{Ag} &= 107.5 \\ \text{KHC}_8\text{H}_4\text{O}_4 \end{array}$	***** Molar n ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	nass *******

Г