LIET 152 1st Exam	2010. 10. 09	Department $:$	ID :	Name :

1. What is the mole fraction of ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right.$, density $=0.790 \mathrm{~g} / \mathrm{ml}, \quad \mathrm{MW}=46.08 \mathrm{~g} / \mathrm{mol}$) in water $\quad(\mathrm{MW}=18.02$ $\mathrm{g} / \mathrm{mol}$) for a solution made from equal volumes of each? (5 points)
2. Industrial grade concentrated $\mathrm{HCl}(\mathrm{MW}=36.46 \mathrm{~g} / \mathrm{mol})$ is known as muriatic acid and is 31.45% by mass HCl in water. What is the molality of this solution? (5 points)
3. List the following in order of solubility in hexane: (3 points)
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$
b. $\mathrm{C}_{6} \mathrm{H}_{6}$
c. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

$$
>\quad>\quad>
$$

4. Calculate the following: (each 5 points)
(a) the mass of CO_{2} that dissolve in 225 mL of a carbonated beverage at 1.10 atm pressure and $25^{\circ} \mathrm{C}$; and (b) the partial pressure of CO_{2} in the gas space above the liquid if a bottle of this carbonated beverage is stored in an ice chest at $0.0{ }^{\circ} \mathrm{C}$. (K_{H} for CO_{2} is $3.4 \times 10^{-2} \mathrm{M} / \mathrm{atm}$ at $25^{\circ} \mathrm{C}$ and $7.8 \times 10^{-2} \mathrm{M} / \mathrm{atm}$ at $0.0^{\circ} \mathrm{C}$) ?
5. Vodaka is 35% by mass ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \mathrm{Mw}=46.07\right.$ $\mathrm{g} / \mathrm{mol}$) and has a density of $0.94 \mathrm{~g} / \mathrm{ml}$. Assuming no other components other than water, calculate the mole fraction, molarity, and molality of Vodaka. (5 points)
6. Hard candy is made from very hot solutions of sugar and water with small amounts of added flavorings. In a typical preparation, the boiling point of the sugar/water mixture reaches $145{ }^{\circ} \mathrm{C}$. What mass ratio of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}: \mathrm{MW}=342 \mathrm{~g} / \mathrm{mol}\right)$ to water is required to raise the boiling point of a sugar/water solution to $145^{\circ} \mathrm{C}$? (5 points) $K_{\mathrm{b}}=1.858^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{mol}$,
7. Fungal laccase is an enzyme found in fungi that live on rotting wood. The enzyme is blue and contains 0.40% by mass copper. The molar mass of the enzyme is approximately $64,000 \mathrm{~g} / \mathrm{mol}$. How many copper atoms are there in one molecule of fungal laccase? ($\mathrm{Cu} \mathrm{Mw}: 63.55 \mathrm{~g} / \mathrm{mol}$) (5 points)
8. For the following constant-temperature process, give the sign (+ , -, or 0) for each of the specified thermodynamic functions. In each case give a brief account of your reasoning: (5 points)

(a) $\mathrm{W}_{\text {sys }}$
(b) $\mathrm{q}_{\mathrm{sys}}$
(c) $\Delta \mathrm{S}_{\text {surr }}$
9. In the upper atomsphere, ozone is produced from oxygen :
(each 5 points)

$$
\begin{aligned}
& 3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g}) \\
\Delta \mathrm{H}^{\circ} \text { reaction }= & 285,4 \mathrm{~kJ} \\
\Delta \mathrm{~S}^{\circ} \text { reaction }= & -137.7 \mathrm{~J} / \mathrm{K} \\
\Delta \mathrm{G}^{\circ} \text { reaction }= & 326.4 \mathrm{~kJ}
\end{aligned}
$$

(a) Is there a temperature at which this reaction becomes spontaneous at 1 bar pressure? If so, find it. If not, explain why one does not exist.
(b) Assume an atmosphere with $\mathrm{PO}_{2}=0.20$ bar and $\mathrm{T}=298 \mathrm{~K}$. Below what pressure of O_{3} is O_{3} production spontaneous?
10. Humans perspire as a way of keeping their bodies from overheating during strenuous exercise. The evaporation of perspiration transfers heat from the body to the surrounding atmosphere. Calculate the total $\Delta \mathrm{S}$ for evaporation of 1.0 g of water if the skin is at $37.5^{\circ} \mathrm{C}$ and air temperature is $23.5^{\circ} \mathrm{C}$. (5 points)

LIET 152 1st Exam	2010. 10.09	Department $:$	ID :

11. Arrange the following in order of increasing entropy, from smallest to largest value: (a) $1.0 \mathrm{~mol}_{2} \mathrm{O}$ (liquid, 373 K); (b) $0.50 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ (liquid, 298 K); (c) $1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ (liquid, 298 K); (d) $1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ (gas, $373 \mathrm{~K}, 1 \mathrm{bar}$); and (e) $1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ (gas, $373 \mathrm{~K}, 0.1$ bar);
(2 points)
12. At $45^{\circ} \mathrm{C}$, what is the vapor pressure of Iodine?
($\left.\mathrm{I}_{2}(\mathrm{~s}): \Delta \mathrm{H}^{\circ}=0, \quad \mathrm{~S}^{\circ}=116.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\right)$
$\left(\mathrm{I}_{2}(\mathrm{~g}): \Delta \mathrm{H}^{\circ}=62.4 \mathrm{~kJ} / \mathrm{mol}, \quad \mathrm{S}^{\circ}=260.7 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\right)$
(10 points)
13. One of the more important industrial chemicals is hydrogen. One process for hydrogen production is called "steam reforming", in which hydrocarbons react with water to give hydrogen and CO. The equation of reaction for reforming methane is written below. (each 5 points)

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

Chemical	$\mathrm{CH}_{4}(\mathrm{~g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2}(\mathrm{~g})$
$\Delta \mathrm{G}^{\circ}$	-50.5	-228.7	-137.2	0
$\Delta \mathrm{H}^{\circ}$	-74.6	-241.8	-110.5	0
$\mathrm{~S}^{\circ}$	186.3	188.8	197.7	130.7

(a) Calculate the free energy change for this reaction at standard conditions.
(b) Estimate the temperature at which the process becomes spontaneous.
14. Calculate the $\Delta \mathrm{H}$ of this reaction. (10 points)

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \Delta \mathrm{H}=?
$$

$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(1) \quad \Delta \mathrm{H}=-1300 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-286 \mathrm{~kJ}$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-1560 \mathrm{~kJ}$
15. The boiling point of an aqueous solution containing Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=342 \mathrm{~g} / \mathrm{mol}\right)$ is $101.45{ }^{\circ} \mathrm{C}$. Calculate the osmotic pressure of this solution at $35{ }^{\circ} \mathrm{C}$ at which the solution density is $1.036 \mathrm{~g} / \mathrm{mL}$. (10 points)

$$
\left(K_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} \mathrm{~kg} / \mathrm{mol}\right)
$$

***************** 문제 해결에 필요한 상수들

\qquad

- $0 \mathrm{~K}=-273.15{ }^{\circ} \mathrm{C}$
- 기체 상수 $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$;

$$
\mathrm{R}=8.206 \times 10^{-2} \mathrm{~L} \text { atm } \mathrm{mol}^{-1} \mathrm{~K}^{-1}
$$

- 물 $\left(\mathrm{H}_{2} \mathrm{O}\right)$ 의 $\mathrm{MW}=18.01 \mathrm{~g} / \mathrm{mol}$

$$
\text { density }=1.00 \mathrm{~g} / \mathrm{ml}
$$

B.P $=100.00{ }^{\circ} \mathrm{C}$
$\mathrm{Cl}: 35.45 \mathrm{~g} / \mathrm{mol}$
$\mathrm{H}: 1.01 \mathrm{~g} / \mathrm{mol}$
C : $12.01 \mathrm{~g} / \mathrm{mol}$
O : $16.00 \mathrm{~g} / \mathrm{mol}$
$. \ln v p=-\frac{\Delta H}{R T}+\frac{\Delta S}{R}$

- Standard S
$\mathrm{H}_{2}(\mathrm{~g}): 130.680 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}): 229.2 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{N}_{2}(\mathrm{~g}) 191.61 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

