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Saccharophagus degradans (formerly “Microbulbifer degradans”) strain 2-40 is a Gram-

negative marine bacterium isolated from the Chesapeake Bay.  Analysis of 16s rDNA 

sequence indicated that S. degradans is related to a group of marine proteobacteria adept 

at degrading complex polysaccharides (CPs). S. degradans can depolymerize at least ten 

CPs including agarose.  Agarose, an algal galactan, is degraded by few organisms.  The 

agarase system of S. degradans was shown to be composed of five enzymes AgaA, 

AgaB, AgaC, AgaD and AgaE.  These proteins contain glycoside hydrolase domains 

GH16, GH50 and GH86.  S. degradans is the only organism known to collectively 

encode agarases with at least one of these domains.  Unusual for agarases, AgaB and 

AgaE also contain multiple type-six carbohydrate binding modules.  Furthermore, AgaE 

contains four thrombospondin type-three repeats whose function in prokaryotic proteins 

were unknown. The predicted agarases were characterized using a variety of methods 

including genomics, biochemical assays, proteomics and a newly described mutagenic 

technique.  Agar degradation by S. degradans includes two depolymerases, AgaB and 



  

AgaC, a β-agarase II (AgaE) and a possible α-neoagarobiose hydrolase (AgaA).    AgaB 

was found to be freely secreted while AgaC and AgaE were surface associated.  AgaC is 

a predicted lipoprotein while AgaE did not have domains characteristic of surface 

localization. The Tsp-3 repeats, which are similar to repeats found on other cell surface 

enzymes, are the proposed cell surface anchoring sequences of AgaE.  
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Chapter 1: Introduction 

 

Marine strain 2-40 

 

Marine strain 2-40 was isolated from the surface of decaying salt marsh grass, Spartina 

alterniflora found in the lower Chesapeake Bay, U.S.A (7).  It is a gram-negative, 

pleomorphic rod shaped organism and motile by a single polar flagellum. Strain 2-40 

requires 1-10% sea salts for growth with optimal growth occurring at 2.3%.  Growth 

occurs optimally at 28°C and pH 7.5 with a range of 4-35°C and pH 4.5-10, respectively 

(94).  The organism is oxidase and catalase positive.  Colonies are white to cream colored 

and turn black upon the production of eumelanin (83) during late stages of growth.  Strain 

2-40 can degrade at least 10 complex polysaccharides (CPs) including agar, alginate, β-

glucan, chitin, cellulose, laminarin, pectin, pullulan, starch, and xylan (50, 70, 94, 126). 

These CPs can be derived from numerous sources including algae, land plants, 

crustaceans, bacteria, and fungi. Strain 2-40 is the only described marine organism with 

this array of degradative capabilities. 

 

The phylogenetic position of strain 2-40 was difficult to establish because 16S rDNA 

sequence of closely related organisms was not available (56, 94).  Based on available 

evidence, it was tentatively classified as “Microbulbifer degradans” strain 2-40.  Chapter 

two will discuss an updated analysis of the inferred phylogenetic position of strain 2-40 



 

 2 
 

and defend the placement of this organism in a new genus related to other CP degrading 

marine organisms. 

 

Complex Polysaccharide Degradation 

 

CPs are composed of repeating sugar units and function primarily as structural or energy 

storage substances.  Some exist in long chains, arrayed in resilient and nearly insoluble 

states, for example, crystalline cellulose (21).  Other CPs, such as agar, are soluble at 

high temperatures, but under physiological conditions are found in a relatively insoluble 

state. CPs are typically found intermeshed with other polysaccharides adding to the 

difficulty of their degradation (9).  For example, the cell walls of vascular plants are 

primarily composed of cellulose microfibrils embedded within a matrix of hemicellulose 

and lignin (21). CPs do not occur in homogenous solutions and represent recalcitrant 

forms of carbon that only specialized organisms can access. 

 

CP degradation in terrestrial environments is mediated by several known microorganisms 

(11, 12, 16, 17, 19, 22, 30, 57, 124, 142); however, the microbes that mediate the 

mineralization of these substances to CO2 in marine environments are largely unknown.  

In pelagic zones, where non-living matter is a major food source, dynamic microbial 

communities have been isolated from solid aggregates (58, 60, 85) composed of CPs and 

other organic and inorganic substances.  This matter is referred to as “marine snow”. The 

microbial communities found attached to it contain various bacteria belonging to multiple 

genera (60, 84), many of which produce hydrolytic enzymes i.e. chitinases to access the 
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available carbon of marine snow.  Much less is known about the microorganisms that 

degrade CPs in estuarine environments such as the Chesapeake Bay.  Estuaries are 

partially enclosed regions where fresh water and ocean water mix creating areas where 

high influxes of nutrients and varying salinity are present.  Unlike pelagic zones, 

estuaries are areas of high primary production much of which occurs in the salt marshes 

present in these areas (122).  Salt marshes similar to where strain 2-40 was isolated are 

typically flooded by tidal waters and are colonized by the marsh grass Spartina 

alterniflora.  They contain plentiful sources of CPs derived from vascular plants, algae 

and crustaceans. These areas are supported by detritus-based ecosystems where CPs 

derived from plant matter are decomposed by communities of fungi and bacteria (100). 

 

Relatively little is known about the microbial communities present in the S. alterniflora 

decay system.  It was thought that the degradation of Spartina spp. initially occurs by 

fungi (24).  These organisms reduce up to 60% of the organic mass present by producing 

copious amounts of exoenzymes, including lignases, and cellulases (106).  As the 

partially decomposed detritus settles into the marsh sediments bacteria become the 

predominant decomposers (24). Recently though, bacterial and fungal communities have 

been shown to cohabitate suggesting that the colonization scheme presented above may 

not always occur as simply (28).  

 

Much of the study of salt marsh microbial ecology has focused on ecologically dominant 

fungal and bacterial constituents with little data on how the actual degradation of CPs 

occurs. Furthermore, this research has been based on organisms involved in 
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lignocellulose degradation while other plentiful sources of CPs have not been addressed, 

including CPs derived from resident algae and arthropods.  Although it is yet to be 

established whether strain 2-40 constitutes an ecologically relevant organism in salt 

marshes from the Chesapeake Bay it can be used as a model organisms for how multiple 

CPs are degraded in these areas. 

 

Strategies of Complex Polysaccharide Degradation 

 

Organisms known to degrade CPs do so by two general means.  One strategy, utilized by 

Sphignomonas sp. imports high molecular weight alginate by means of an invagination of 

its outer membrane within which a specific transporter is present (98).  The alginate is 

imported and degraded intracellularly (97, 99). More commonly bacteria and fungi use 

secreted enzymes to mediate the initial degradation of CPs to soluble saccharides which 

are then imported into the cell. These enzymes must remain active in the extracellular 

environment where changes in pH, salinity and proteolytic substances may be present.  

The location of these enzymes in relation to the cell and substrate plays a critical role in 

the degradation of the substrate and subsequent carbon acquisition by the organism. 

 

Secreted CP degrading enzymes can be presented by two different means, either attached 

to the cell surface or freely secreted into the extracellular milieu. Freely secreted enzymes 

allow for the degradation of distant substrates. A disadvantage of this strategy is that if 

excessive diffusion of the enzymes occurs then the products of their activity may be lost.  
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This challenge would be compounded in marine environments where mixing due to tidal 

currents could greatly disperse the desired products. An alternative strategy is the 

attachment of enzymes to the surface of the bacterium.  Although these enzymes cannot 

access distant substrates the resulting soluble sugars would be in close proximity to the 

cell.   

 

Preliminary data suggested that strain 2-40 attaches certain agarases, chitinases and 

alginate lyases to its cell surface by an unknown mechanism (139).  The remainder of this 

report will focus on addressing the apparent method of cell surface attachment of 

agarases utilized by strain 2-40. 

 

Cell Surface Enzyme Attachment in Bacteria 

 

Bacteria are known to utilize several mechanisms to attach proteins to their cell surface 

(88). One example is the direct anchoring of the proteins to the outer-membrane by 

means of anchoring domain present in the protein, for example, EngE produced by 

Clostridium cellulovorans (131). This protein is an endoglucanase, which utilizes an S-

layer homology domain (SLH) to anchor to the peptidoglycan layer resulting in the 

exocellular display of the protein. These domains are highly similar to the S-layer protein 

RsaA from the Gram-negative bacterium Caulobacter crescentus (26), and can be found 

on various surface associated proteins from gram-positive bacteria (89, 113).  In fact, 
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SLH domains have only been identified as anchoring domains in proteins produced by 

Gram-positive bacteria. 

 

Another mechanism to anchor proteins to a bacterial cell surface is through the use of 

transmembrane domains.  These domains are typically multi-pass domains characteristic 

of outer membrane porins and receptors (88).  These domains have not been identified in 

hydrolytic proteins, but are common in integral outer membrane proteins, such as LamB 

from E. coli and OmpA proteins from various gram-negative bacteria (88). 

 

Alternatively, the cell surface attachment of secreted proteins may be dependent on a 

specific post-translational modification.  For example, PulA, a pullulanase from 

Klebsiella pneumoniae, utilizes a lipid anchor to attach to the outer membrane of this 

organism (116). Characterization of this protein sequence has shown that there is a 19 

amino acid residue signal sequence that is cleaved upon export to the periplasm at a site 

termed the lipobox.  This exposes an amino terminal cysteine.  The sulphydryl group of 

the cysteine is modified by the attachment of a diacylglycerol and the amino group of 

cysteine is acylated with a fatty acid (62).  The modified protein is then transiently 

embedded in the outer membrane (36). The mature enzyme is released into the medium 

without the removal of the covalently attached lipid moiety (34, 35, 37).   

 

Another strategy of bacterial cell surface protein display is the cellulosome. Cellulosomes 

are high molecular weight cell surface protuberances capable of hydrolyzing complex 

polysaccharides including cellulose, pectin, and xylan (43).  These structures are 
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produced by various cellulose degrading Clostridia and fungi (3, 4, 11-22, 38, 39, 41-43, 

51, 53, 77, 107, 125, 141).  Cellulosomes array carbohydrases upon cell surfaces via a 

well characterized protein-protein interaction.  The characteristics of cellulosomes are 

well established.  Each cellulosome can range from 1-3 mDa and contains multiple non-

catalytic organizing scaffold proteins termed scaffoldins (21).  Scaffoldins are high 

molecular weight proteins that provide platforms to which degradative proteins and a 

cellulose binding domain are both anchored to the cell wall and exposed to the 

environment (13, 17, 19).  Scaffoldin proteins contain cohesion domains (cohesins) that 

bind to repetitive docking sequences within hydrolytic enzymes termed dockerin 

domains.  All hydrolytic enzymes that bind to scaffoldins share species-specific dockerin 

repeat sequences.  Dockerin sequences are well characterized and easily identified by 

their conserved repetitive signature sequences (13, 17, 19). The scaffoldin itself is bound 

to an SLH-containing anchoring protein that attaches the entire complex to the cell 

surface (104).   The cellulosomes are exposed to the extracellular milieu and are thought 

to allow the organism to simultaneous bind and degrade CPs while keeping released 

soluble sugars in close proximity to the cell (17). The organisms that utilize cellulosomes 

appear to be exclusively from terrestrial habitats. 

 

The attachment of enzymes to the cell surface of strain 2-40 was proposed to be similar to 

that of cellulosomes (139).  Growth with agarose as a sole carbon source coincided with 

the apparent  production of cell surface protuberances (139).  Some of these 

protuberances appeared to contain a 98kDa agarase.  The protuberances also appeared to 

cross-react with a scaffoldin specific anti-serum suggesting that strain 2-40 also produced 
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structures similar to cellulosomes (139).  It was unknown, however, if the enzymes of 

strain 2-40 contained dockerin-like signature sequences.  The agarase system was chosen 

for further study because little was known about the protein sequences and functional 

domains found within these proteins.   

 

Agars and Agarose 

 

Agars belong to a heterogeneous family of algal polysaccharides containing the repeating 

units of 1,3-D-galactose and 4-linked 3,6,-anhydro-α-L-galactose, termed agarose (47). 

Agarose is an uncharged polysaccharide with well known gelling characteristics. Agarose 

polymers can be cleaved into two distinct disaccharide units, neoagarobiose and 

agarobiose.  Neoagarobiose contains D-galactose at the reducing end while agarobiose 

contains the L-galactose derivative at its reducing end (33) (Figure 1.1).  

 

Agars belong to a larger family of algal galactans termed agarocolloids.  Those with 

strong gelling capabilities are termed agars and those with weakly gelling capabilities are 

termed agaroids (33).  Agarocolloids are found in nature as methyl ether, pyruvate acetal 

and sulphate ester substituted derivatives dependent on the originating species (33).  

Porphyran, for example, is a highly sulphated weakly gelling agaroid derived from 

Porphyran and Bagia species (33, 102). The discrepancy in gelling is due to the amount 

and nature of various chemical substitutions that may take place along the agarose 

polymer, for example, 3,6, anhydro-L-galactose can be replaced with L-galactose, methyl 



 

 9 
 

ethers, or sulfate hemi esters. Pyruvic acid ketals may be added to either monosaccharide, 

xylose or glucose may also be attached to the C-6 sugar of the 3 linked saccharide (33). 

Other sugars may also be present, in a species specific manner such as 4-O-methyl-α-L-

galactopyranose from Gracilaria tikvahiae (33).  

 

Agars and some agaroids are major cell wall constituents of various red algae belonging 

to the Rhodophyceae family, such as some members of Gracilaria and Porphyra genus 

(33, 102). Most red algae utilize galactans as a major constituent of their cell walls of 

which agar can constitute 70% (33).  Other galcatans present in the cell walls of these 

algae are largely unknown, but appear to consist of various forms of agars and a similar 

polysaccharide termed carrengeenan (β-(1,4)-D-galactose-α-(1,3)-D-galactose) (32). 

 

Algal cell walls are complex substrates consisting of a matrix of agars and other galactans 

along with embedded xylans and cellulose microfibrils. Removal of the gelatinous 

portion leads to the collapse of the cellulose microfibrils (33). The complete degradation 

of algal cell walls requires a consortium of enzymes with differing catalytic capabilities. 

This complexity may be the first line of defense for rhodophytes presenting a sufficiently 

complex substance that requires the function of multiple enzymes for its degradation. 
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Agarolytic Organisms 

 

Agar-degrading organisms were first isolated from the Norwegian coast by Gran in 1902. 

Since that time period at least 30 organisms have been reported that are capable of pitting 

agar plates. The vast majority of these organisms are aquatic isolates belonging to 

Cytophaga (45, 46, 136), Microbulbifer (110-112), Pseudomonas (61, 80), 

Pseudoalteromonas (23, 74, 119, 137), Microscilla (148), Vibrio (9, 10, 127-129), 

Alterococus (121), Alteromonas (115), Thalassomonas (109) and Zobellia (5, 6, 76).  

Agarase activity has also been observed in terrestrial organisms, such as Paenibacillus 

(67), Streptomyces (25), as well as an unidentified hospital contaminant (130).    

Currently there is only one report of an agarase purified from a Eukaryote, the mussel 

Littorina mandshurica (134, 135). Because agarolytic bacteria have been isolated from 

various Far Eastern Mussels (74, 75), it is likely that the agarase activity of L. 

mandshurica is due to resident bacteria.  

 

Agarase activity was thought to be solely associated with saprophytic organisms. 

Recently it has been found that agarolytic members of algal epiphytic communities can 

cause disease.  Agarolytic bacteria belonging to Vibrio (127), Pseudomonas and 

Pseudoalteromonas (75) genera have been isolated from the surface of certain agar-

producing red algae (agarophytes).  Pseudomonas sp. SK38 is the causative agent of 

green spot rot in Porphyra dentata (80, 117) while Pseudoalteromonas gracilis strain B9 
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has been implicated in a major die-offs of cultivated agarophytes in South Africa (119).  

Further study revealed that P. gracilis produces a β-agarase that localizes to the cell walls 

of Gracilaria gracilis where it causes bleaching and weakening of the cell wall structure 

(119).  Agarases can now also be considered pathogenicity factors that affect the cellular 

structure of red algae and pose threats to algal culture stocks.  Cell wall degrading 

enzymes are also used as pathogenicity factor by terrestrial plant pathogens such as 

Erwinia chrysanthemi  (81). 

 

Agarases 

 

Agarases can be classified into two major categories, β and α.  β-agarases cleave agarose 

at the β 1,4 linkages into series of neoagarobiose with D-galactose at the reducing end 

while α agarases yield sugars of the agarobiose series with 3,6, anhydro-L-galactose at 

the reducing (63, 115, 143). 

 

The more common β-agarase system has been well characterized in Pseudoalteromonas 

atlantica.  This system utilizes three classes of agarases to depolymerize agarose to 

soluble monosaccharides (Figure 1.1) (23). The first is a β-agarase I that cleaves agarose 

into neoagarotetraose as a major product. Larger neoagaro-oligosaccharides may also be 

present.  Neoagarobiose can also be detected when reactions contain excessive 

concentrations of the enzyme. This enzyme, however, cannot cleave neoagarotetraose.   

The second enzyme is a β-agarase II. It cleaves agarose to an early accumulation of 
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neoagarohexaose and neoagarotetraose and can also cleave these products into 

neoagarobiose (101, 103).  This enzyme, thus, has both endo- and exo-lytic activity. A 

third enzyme, α-neoagarobiose hydrolase, acts upon the 1,3 linkage of neoagarobiose to 

yield D-galactose and 3,6 anhydro-L-galactose (23).  This enzyme cannot degrade sugars 

larger than neoagarobiose.  Galactose enters the glycolytic pathway while the 

biochemical fate, if any, of 3,6 anhydro-L-galactose is unknown (23).  β-agarase enzymes 

have been purified from numerous organisms (Table 1.1).  
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Figure 1.1 

 

The degradation of agarose by β-agarase systems: 

  

Agarose is a algal polysaccharide composed of repeating units of 1,3-D-galactose and 4-

linked 3,6,-anhydro-α-L-galactose.  Neoagarobiose and agarobiose are noted. β-agarase 

systems utilize three enzymes to degrade agarose.  The major depolymerase is the β-

agarase I enzyme that produces predominately neoagarotetraose.  This sugar can be 

degraded by a β-agarase II enzyme to yield neoagarobiose.  An α-neoagarobiose 

hydrolase cleaves neoagarobiose to D-galactose and 3,6 anhydro-L-galactose (Figure 

adapted from Belas, (23)).  
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Table 1.1  

Characterized agarases 

Organism Activity Name MW Cellular 
Location 

Reference 

Pseudomonas 
SK38 

β-I pagA 37  (80) 

Pseudomonas 
isolate 

β-I 
β-I 

I 
IIb 

105 
63 

Supernatant 
Supernatant 

(93) 

P. atlantica β-I 
β-II 

 55 
32 

Supernatant 
Membrane 

(23, 101-
103) 

Microbulbifer 
JAMB-A94 

β-I agaA 48  (112) 

Microbulbifer 
JAMB-A7 

β-I agaA7 49  (110) 

Agarivorans 
JAMB-A11 

β-II agaA11 105  (108) 

Alteromonas 
agarlyticus GJ1B 

αI  180 Supernatant (63) 

Vibrio AP-2 β-II  20 Supernatant (9) 
Vibrio sp. PO-303 βI 

βII 
β? 

a 
b 
c 

88 
115 
57 

Supernatant (10) 

P. atlantica str T6c β-I agrA 55 Supernatant (23) 
Cytophaga sp. β   Supernatant (45, 46) 
Pseudomonas str, 
w7 

β-I pjaA 59  (61) 

S. coelicolor β-I dagA 35 supernatant (25) 
Vibrio JT0107 β-II agaA 

(0107) 
agaB 

105  (127-129) 

Pseudoalteromonas 
gracilis str. B9 

β-I agaA 30 Supernatant (119) 

Cytophaga 
flevensis 

β-I  26 Cell Bound 
& 

Supernatant 

(96, 136) 

Pseudoalteromonas 
antartica 

β-I  33 Supernatant (137) 
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There are only two described  α-agarase systems (63, 109).  The most well known is that 

of Alteromonas agarlyticus strain GJ1B(63).  This organism appears to utilize a 

depolymerizing α-agarase that yields predominately agarotetraose as the major product. 

This sugar is then partially degraded by a presumed β-galactosidase acting upon the 

reducing end to yield agarotriose (63). Considering the dramatic agar degrading 

characteristics reported for this organism, additional enzymes could be present.  Most 

notably absent is an α-agarase II that would degrade agarotriose.   

 

Modular Structure of Agarases 

 

Agarases belong to a family of proteins termed O-glycoside hydrolases that hydrolyze 

bonds between carbohydrate units.  These proteins are typified by a modular structure 

that contain distinct catalytic, and occasionally, carbohydrate binding modules.  Currently 

the most widely accepted method for the classification of these modules is based upon 

primary amino acid sequence, as opposed to catalytic or binding properties. Using this 

method O-glycoside hydrolase catalytic (GH) domains have been categorized into 99 

families while carbohydrate binding modules (CBM) now belong to 43 families (65, 66).  

Distinct domains are typically separated by repetitive linker sequences as has been 

observed in numerous proteins from strain 2-40 (69) and Cellvibrio japonicus (114).    
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Modules of the same family, either GH or CBM, are thought to share structural and 

mechanistic features as well as evolutionary lineages (65, 66). GH domains and CBM 

that share protein folds are grouped together into clans.  Interestingly, though, conserved 

sequences or protein folds are not indicative of binding or catalytic characteristics. There 

are also reports of proteins containing multiple GH domains from different families each 

with distinct catalytic properties (65, 66).  Until recently, as will be discussed in Chapter 

3, GH domains within agarases had not been established. Furthermore, CBM domains 

capable of binding agarose have not been described. 

 

Uses of Agar and Agarases 

 

The cultivation of agar-producing red algae (agarophytes) is an agricultural industry 

estimated to be worth billions of dollars ($US) worldwide.  The cultivation of 

agarophytes is encouraged by the Food and Agricultural Organization of the United 

Nation as a profitable and sustainable industry. Current statistics show that 55,000 dry 

tons of red algae are collected annually yielding 7,500 tons of agar.  The value of this 

industry is currently estimates at 132 million dollars world-wide with Chile, Spain and 

Japan as the major producers.  Other agarophytes, such as Porphyra sp. (nori, Japanese), 

are sources of food and not necessarily used for the extraction of agar.  The annual 

production of Porphyra sp.  is estimated at 90,000 dry tons with a value of 1.5 billion 

dollars(http://www.fao.org/documents/showcdr.asp?urlfile=/DOCREP/004/Y3550E/Y35
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50E 04.htm).  The study of agarolytic organism may become increasingly important as 

these potentially valuable crops are further cultivated. 

 

Agar and agarose have been used in many applications, including as gelling agents for 

bacteriological media and electrophoretic gels.  Agar is also used extensively as 

texturizing, emulsifying, and thickening agents in a variety of foods allowing for a plant 

source of a gelatin-like substance. Agar can also be used as an ointment base for creams 

and salves (1). Reports exist of the beneficial characteristics of neoagaro-

oligosaccharides such as moisturizing characteristics and their ability to stimulate 

macrophage populations (147).   

 

An emerging use of agarases is in the production of protoplasts from agarophytes (10).  

Protoplasts can be used for plant breeding and genetic manipulation (29).  Enzymatic 

mixtures containing agarase, xylanase, cellulase, mananase, and proteolytic enzyme 

activity are typically needed to efficiently produce high quality protoplast preparations 

(10).  A challenge is the complex algal cell wall that is modified in a species specific 

manner.  Because of this, a single cocktail of enzymes does not perform well on all 

sources. If strain 2-40 is shown to degrade certain red algae species in culture then 

cellular extracts and supernatant preparations from these cultures may form the basis of 

new enzyme cocktails. Strain 2-40 may represent an organism that would enable 

harvesting of proteins from a single source. 
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The 2-40 Agarase System 

 

The agarase system of strain 2-40 has been preliminarily characterized on the basis of 

enzyme activity.  It appears to produce at least three proteins that depolymerize agarose 

in zymograms (140).  Previous studies detected β-agarase I, β-agarase II, and α-

neoagarobiose hydrolase activities in cellular fractions by reducing sugar assays (126).  

Total agarase activity appeared to be cell-associated through logarithmic growth then was 

primarily detected in the supernatant fraction as the cultures entered stationary phase 

(126).  The majority of the cell-associated activity was present in crude membrane 

preparations while little was detected in periplasmic or cytoplasmic fractions (126, 140). 

 

Agarase activity was detected in culture supernatants from cultures grown with agar, 

agarose, neoagarohexaose, neoagarotetraose and neoagarobiose as sole carbon sources 

(126).  Agarase activity was also detected to a lesser degree in culture supernatants after 

growth in the following substrates: pullulan, xylan, chitin, starch, alginic acid, β-glucan, 

glucose, and,  carboxy methyl cellulose (126).  Interestingly, agarase activity was 

detected in cultures entering stationary phase growth with glucose as a sole carbon source 

(OD600=0.7) and was nearly 3x more as the cultures aged (OD600=1.2) (126, 140).   This 

suggested that glucose only partially represses agarase activity perhaps by repressing 

certain, but not all, of the agarases encoded by strain 2-40. 
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A β-agarase I was partially purified from strain 2-40 (139, 140).  This enzyme was 98kDa 

and released neoagarotetraose as the major product from the degradation of agarose. A β-

agarase II of 42kDa agarase was co-purified and released neoagaotetraose and small 

amounts of neoagarobiose when reactions contained excessive amounts of enzyme (139, 

140).  A neoagarobiose hydrolase has not been purified from strain 2-40 but its activity 

has been detected by reducing sugar assays (126). 

 

Cell Surface Agarase Activity in strain 2-40 

 

 Growth in the presence of agarose appears to coincide with a dramatic cell 

morphological change. While cells grown with glucose were typified by smooth surfaces, 

those grown with agarose had surfaces covered by protuberances (139).  This was also 

observed when the cells were grown with chitin and alginate as a sole carbon sources 

(139).  Antibodies, specific to the 98kDa β-agarase I, were raised and shown by immuno-

localization to bind to discreet areas of the cell surface.  These areas were thought to 

correspond to the cell surface protuberances and suggested that strain 2-40 anchored 

hydrolytic enzymes to its surface (139, 140). However, the mechanisms of attachment 

and the nature of the protuberances remained unknown. 

 

There are multiple reports alluding to the presence of membrane bound agarases from 

other organisms such as Cytophaga sp. (44, 46), Cytophaga flevensis (136), Zobellia 

galactanivorans (6, 76) and Pseudoalteromonas atlantica (23) .  This best data is from P. 
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atlantica (59, 101, 103) which by characterization of various cellular fractions indicate 

that the β-agarase I was a freely secreted protein (101, 103) while the β-agarase II was 

only found in soluble fractions of cellular lysates suggesting a membrane localization for 

this protein (59).   The nature of this apparent cell surface attachment is currently 

unknown. Protuberances have not been described for any of these organisms. 
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Statement of Purpose 

 

The degradation of complex polysaccharide is a critical process in the carbon cycle. In 

terrestrial habitats it is carried out by communities of microorganisms some of which 

array enzymes on their cell surface.  Much less is known about the organisms that 

perform this critical function in marine habitats. The marine isolate, S. degradans, 

appears to be unusually adept at degrading complex polysaccharides and can be used as a 

model to study the strategies by which marine bacteria degrade these substances.  This 

work was performed to identify the constituents of the agarase system and characterize 

their activity and cellular placement.  The model of agar degradation by S. degradans 

may be conserved in other enzymes systems produced by this and perhaps related 

organisms.  

 
 



 

 23 
 

Chapter 2: Saccharophagus degradans gen. nov., sp. nov., a 

Versatile, Marine Degrader of Complex Polysaccharides 

 

Introduction 

 

The carbon cycle in marine habitats has not yet been elucidated as many of the 

microorganisms that degrade complex polysaccharides (CPs), especially those derived 

from higher plants and algae, have not been identified. These include highly specialized 

microorganisms that recycle CP, a critical step in the marine food web. Within the past 

decade a number of such bacteria have been discovered. 

 

In 1997 a gram-negative bacterium that degrades cellulose, xylan and chitin was isolated 

by Gonzalez et al. (55) from a salt marsh in Georgia USA and named Microbulbifer 

hydrolyticus IRE-31T. In 2002 Distel et al. (40) reported taxonomic criteria for a 

shipworm symbiont that degrades cellulose and found them to be sufficiently different 

from the Microbulbifer taxon to be accorded a new genus, Teredinibacter. Within the 

past two years six strains related to Microbulbifer have been deposited in the GenBank 

database. 

 

In 1986 Andrykovitch (8) isolated bacteria involved in the degradation of a salt marsh 

grass, Spartina alterniflora found in the lower Chesapeake Bay, U.S.A.  One of these was 
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designated strain 2-40 T.  Based upon phenotypic characteristics, it was placed with the 

alteromonads, where it resides today in order Alteromonadales of the 

Gammaproteobacteria, in family Alteromonadaceae. Later, based on sequence analysis of 

16S rDNA, distinctive cellular morphology, and CP degradative capabilities, 2-40 T was 

considered to be closely related to the genus Microbulbifer. A more meaningful 

classification of strain 2-40 T had been hampered by the limited availability of 16S rDNA 

sequences from closely related organisms.  Now, on the basis of more than 20 available 

sequences a new genus is proposed, Saccharophagus, to accommodate the most versatile 

marine carbohydrate degrader yet identified. 

 

Strain 2-40 T can degrade at least 10 CPs, including agar, alginate, chitin, cellulose, 

fucoidan, laminarin, pectin, pullulan, starch, and xylan (50, 70). These CPs are derived 

from numerous sources including algae, land plants, crustaceans, bacteria and fungi. 

Because of its involvement in ocean and estuarine carbon cycles, the US Department of 

Energy has recently (February 2005) completed sequencing the genome 

(http://genome.jgi-psf.org/draft_microbes/micde/micde.home.html). Genomic analysis 

has predicted that there are >130 open reading frames, encoding enzymes involved in the 

depolymerization of CPs. Additionally, it is likely that at least another 100-200 genes are 

involved in signaling, regulation and further metabolism of CPs.   

 

Strain 2-40 T clusters with a marine CP degrading genera. Its 16S rDNA sequences is 

most closely related to those of Microbulbifer hydrolyticus (90.5%) and Teredinibacter 

turnerae (91.5%); it shares the ability to degrade complex polysaccharides with both M. 
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hydrolyticus and T. turnerae and  it has similar cellular morphology to that of M. 

hydrolyticus, most notably the copious production of membrane blebs and vesicles when 

grown with a complex polysaccharide as the sole carbon source (56).  It is proposed that 

these organisms form a cluster of Gram-negative marine gamma-proteobacteria with the 

ability to degrade CPs.  The question remained whether strain 2-40 T is sufficiently 

different from members of these genera to warrant its placement in a new genus. 

 

Materials and Methods 

 

Phylogenetic analysis: The16S rDNA sequence of strain 2-40 T was obtained from 

GenBank (AF055269).  The 16S rDNA tree was generated using ClustalW 1.82 (31) for 

sequence alignment and the neighbour-joining program in the PHYLIP package (52). 

Before analysis, a filter was applied to exclude positions with less than 50% conservation 

within the sequences being aligned. Only positions 110 to 1,265 (E. coli numbering) were 

considered. All additional sequences were obtained from the GenBank database.  It 

should also be noted that a metagenomic study of Sargasso Sea prokaryotes revealed 

putative proteins attributed to isolate Microbulbifer SAR-1 

(http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/sargasso.html). However, 16S 

rDNA sequences from the Sargasso Sea shared <90% similarity with any isolate included 

in this analysis. To date (October 2005) other related sequences have not been reported 

in the GenBank database.    
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Substrate Utilization: Gelatin utilization and nitrate reduction were determined by API 

20NE test strips supplemented with sea salts medium (2.5% sea salts, 0.05% yeast 

extract).  Assays for the depolymerization of cellulose, pullulan and xylan utilized 

azurine-crosslinked polysaccharides (Megazyme; http://www.megazyme.com/) 

incorporated into 1/3 strength Marine Agar (Difco 2216) were performed by M. Howard. 

Degradation of these insoluble substrates by endo-hydrolases produced soluble dye-

labeled fragments that were easily observed as blue halos around active colonies. M. 

hydrolyticus was used as a positive control for xylan and cellulose utilization. To assay 

for growth on alginate or pectin, strains were grown in minimal sea salts liquid media 

incorporating the polysaccharide of interest (0.2% final conc.).  The disappearance of the 

polysaccharides and a reduction of broth viscosities indicated the degradation of alginate 

and pectin.  Negative controls included media without polysaccharide.  Strain 2-40 T was 

used as a positive control.   

 

Results 

 

Since the initial report of strain 2-40 T (56), 18 additional 16S rDNA sequences of related 

organisms have become available in GenBank. These permitted clarification of the 

phylogenetic position of strain 2-40 T when considered along with available phenotypic 

analyses.  The inferred position of strain 2-40 T falls outside of two branches of the tree 

(Figure 2.1).  The first is a Microbulbifer cluster that contains seven members including 

Pelagiobacter variabilis (72).  This cluster is supported by a high bootstrap score.  Six 

members were isolated from aquatic marine habitats, while strain M. arenaceous  was 
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isolated within coastal sandstone (133).  The type species of the genus Microbulbifer is 

M. hydrolyticus IRE-31T.   

 

The second branch is more diffuse and contains organisms from diverse marine niches, 

predominantly endosymbionts.  Only one of these, T. turnerae, has been given a validly 

published name (40). T. turnerae, LP1, LP2, LP3, and AF102866 are endosymbionts of 

shipworms from the bivalve family Teredinidae  while “Candidatus Endobugula 

glebosa” and “Candidatus Endobugula sertula” were isolated from the pallial sinuses of 

the bivalve Bugula neritina (64, 92).  Strain NKB4 was isolated from deep sea sediments 

(90). The 16S rDNA sequences of strains SCB11 and BD2-13 were derived from gene 

clones from marine environmental samples (91). Strain characteristics for these 

organisms have not been reported. Strain 2-40 T shares a maximum of 91% 16S rDNA 

similarity with the Microbulbifer genus and 93% similarity with the endosymbiont cluster 

(Table 2.1). It shares 91.9% and 91.4% to BD2-13 and SCB11 respectively. The 

generated phylogenetic tree does contain nodes with weak bootstrap scores.  This is due 

to the low available sampling size of 16s rDNA sequences.  These data suggest that strain 

2-40 T is related to the other members included in the 16S tree; however, there is no 

strong support that strain 2-40 belongs within the two clades represented in this tree and 

thus may represent a new genus and species.  This is in agreement with previously 

published data (40, 56, 133, 146). 
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The suggestion that strain 2-40 T is distinct from the other Microbulbifer/Teredinibacter 

isolates is also supported by comparison of phenotypic characteristics (Table 2.2).  Most 

notably the %G+C content of strain 2-40 T is significantly lower than that estimated for 

the other organisms, 46.7% as reported by Gonzalez and Weiner (56) and 45.8% as 

determined by draft genomic sequence compared to 57.7% for M. hydrolyticus and  

49-51% for several T. turnerae strains (40).  Furthermore the major fatty acid of strain 2-

40 T is Iso-C16:0 (37%) (56), while Iso-C15:0 is the primary fatty acid of M. hydrolyticus 

(55), and M. salipaludis (146).  Strain 2-40T reduces nitrate to nitrite (this study) and 

synthesizes eumelanin via tyrosinase activity (82) both traits reported for only one other 

strain, M. arenaceous (133), which does not degrade agar and shares only 90.6% 16S 

rDNA sequence similarity with strain 2-40T. 
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Figure 2.1 

 

Phylogenetic position of strain 2-40T based on its 16S rRNA gene sequence: The tree 

was generated using CLUSTAL W 1.82 (31) for sequence alignment and the neighbor-

joining program in the PHYLIP package (52). Burkholderia cepacia served as the 

outgroup (not shown). Numbers at nodes indicate percentage bootstrap values above 50 

(100 replicates). Bar, Jukes–Cantor evolutionary distance of 0·05. 
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Table 2.1 

 

Pair-wise alignment of related 16srDNA sequences 

 

Organism GenBank 

Accession number 

% Similarity to 2-40T 

Cellvibrio mixtus UQM 2601T AJ289160 91.00 

Strain NKB4 AB013256 92.60 

Gene clone SCB11 Z31658 91.36 

Gene clone BD2-13 AB015541 91.89 

Bankia setacea symbiont AF102866 93.08 

Teredinibacter turnerae T7902 T AY028398 91.52 

Lyrodus pedicellatus symbiont 

LP2 

AY028398 91.15 

“Candidatus Endobugula sertula 

BnPV” 

AF006607 89.62 

“Candidatus Endobugula sertula 

BnTP” 

AF006608 89.57 

“Candidatus Endobugula sertula 

BnSP” 

AF006606 90.32 

“Candidatus Endobugula glebosa AY532642 91.40 

Lyrodus pedicellatus symbiont 

LP1 

AY150183 92.04 
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Lyrodus pedicellatus symbiont 

LP3 

AY150578 93.10 

Microbulbifer hydrolyticus IRE-

31 T 

U58338 90.54 

Microbulbifer salipaludis SM-1 T AF479688 91.09 

Microbulbifer elongatus 

ATCC10144 T 

AB021368 90.75 

Microbulbifer arenaceous RSBr-1 AJ510266 90.57 

Microbulbifer cystodytense C1 AJ620879 90.23 

Pelagiobacter variabilis Ni2088 AB167354 90.90 

Microbulbifer maritimus TF-17 T AY377986 90.22 

Alcanivorax borkumensis sk2T Y12579 87.68 

Alcanivorax jadensis T9 T AJ001150 87.36 

Alcanivorax venustensis ISO4 T AF328762 87.84 
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Table 2.2 

Distinguishing characteristics of strain 2-40 as compared to Microbulbifer spp. and T. turnerae  
 

 
 

 
Strain 2-40T 

M. 
hydrolyticus 

M. 
salipaludis 

M. 
elongatus 

M. 
maritimus 

M. 
arenaceous 

T. 
turnerae  

 
Trait        
%G+C 45.8 57.7 59 nd 59.9 nd 49-51 
Major FA  Iso-C 16:0 Iso-C 15:0 Iso-C 15:0 Iso-C 15:0 Iso-C 15:0 nd nd 
Eumelanin  + - - - - + - 
NO3 reduction†   +* -* nd -* nd + nd 
Gelatin†   +* +* nd +* nd nd nd 
 
Substrate§ 
Agar 

 
+ 

 
- 

 
+ 

 
+ 

 
- 

 
- 

 
- 

Alginate +   +**   +** + nd nd nd 
Cellulose + +   -** + nd nd + 
Chitin + +          - + - + nd 
Fucoidan + nd nd nd nd nd nd 
Laminarin + nd nd nd nd nd nd 
Pectin +   +**   -**   +** nd nd + 
Pullulan +   +**   +**   +** nd nd nd 
Starch + + + + nd + nd 
Xylan + + +   -** nd nd + 
        
Reference (56) (55) (146) (144) (145) (133) (40) 
 
* as determined in this study; ** as determined by M. Howard§ Substrates tested for depolymerization and  
utilization; +, substrate depolymerized;   -, substrate not depolymerized under conditions tested; †, API 20NE test strips; 
nd, not described; 
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Discussion 

 
Strain 2-40 T was known to degrade at least 10 CP, many more than had been reported for 

T. turnerae and strains of Microbulbifer (Table 2.2). However, because this required 

additional confirmation, the differences in CP degradative capabilities within the 

Microbulbifer/Teredinibacter/ Saccharophagus group of bacteria were investigated to 

establish the possibility other conserved genes. M. hydrolyticus, M. elongatus, and M. 

salipaludis were tested for their abilities to degrade alginate, cellulose, pectin, pullulan 

and xylan as compared to strain 2-40 T.  The results are summarized in Table 2.2.   

 

Strain 2-40 T depolymerized all the tested substrates shown. Each of the other related 

strains was negative for at least one of the substrates even considering the fact that not 

every strain was available. The versatility of strain 2-40 T CP degradation is unique 

among the other strains of the Microbulbifer/ Teredinibacter/ Saccharophagus group and 

even among any other known bacteria. The phylogenetic and phenotypic analyses 

presented here, together with other published recommendations (40, 123) support the 

classification of strain 2-40 T as gen. nov. Saccharophagus sp. nov. S. degradans 2-40T. 

 

Description of Saccharophagus gen. nov.  

Saccharophagus (Sac′a.ro.pha.gus. Gr.n. saccharon sugar; Gr.masc. n. phagos, glutton; 

N.L. masc. n. Saccharophagus). 
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Gram-negative, motile, heterotrophic, pleomorphic, rod shaped, aerobic, catalase 

positive, oxidase positive.  Numerous cell surface blebs and vesicles are produced.  

Degrades numerous complex polysaccharides.  Requires sea salts for growth.  The type 

species is S. degradans.   

 

Description of Saccharophagus degradans sp. nov. 

(de.gra′dans L. part. adj. degradans, bring back into the former order). 

Cells are pleomorphic rods, averaging 1.5 to 3.0 µm long x 0.5µm wide during the log 

growth in glucose. In media containing complex polysaccharides as sole carbon sources, 

cells can be pleomorphic and produce surface protuberances and vesicles.  Cells form 

coils and filaments when grown at high salinity.  Colonies are cream color then turn black 

upon eumelanin production. Colonies rapidly pit agar plates.  Capable of utilizing the 

following complex carbohydrates as a sole carbon source agar, alginate, chitin, cellulose, 

fucoidan, laminarin, pectin, pullulan, starch, and xylan. Hydrolyzes tyrosine. 

Temperature range for growth is 4-37 degrees with an optimum of 30 degrees.  Optimum 

pH for growth is 7.5 with a range of 4.5-10.  Requires sea salts for growth with range of 

1-10% and an optimum of 3.5%.  Secretes proteases. The %G+C content is 45.8 as 

determined by genomic sequencing. Isolated from the surface of degrading salt marsh 

cord grass, Spartina alterniflora in the lower Chesapeake Bay, Mathews County VA and 

deposited in the American Type Culture Collection (ATCC43961 T) and in the German 

Collection of Microorganisms and Cell Cultures collection (17024T). The type strain (and 

only strain to date) is 2-40T.  
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Chapter 3: Characterization of the Agarase System of S. 

degradans  

 

Prior to this work little was known about the structure of agarases.  It was unknown 

whether these proteins shared conserved amino acid sequence; in fact, previous attempts 

to classify agarases based on primary amino acid sequence were unsuccessful (127, 148).  

The modular structure of agarases as a whole was thus unknown including conserved 

glycoside hydrolase (GH) domains and carbohydrate binding modules (CBM). The 

agarase system of S. degradans was chosen for study because it represented a relatively 

unknown class of glycoside hydrolase enzymes that likely contained unusual GH and 

possibly CBM domains.   

 

Preliminary data suggested that S. degradans degrades agarose as a sole carbon source 

with multiple secreted β-agarases (140). Activities suggestive of  β-agarase I, β-agarase 

II, and α-neoagarobiose hydrolase enzymes were detected (126) in culture supernatants 

and whole cell lysates. The agarase system from S. degradans appeared unusually 

efficient; growth occurred more rapidly than with chitin or cellulose (unpublished 

observations; N. Ekborg, L. Taylor, M. Howard). Furthermore, S. degradans degrades 

agar at a faster rate than P. atlantica (R. Weiner, unpublished results). S. degradans 

appeared to utilize at least three proteins to depolymerize agarose; however, the amino 

acid sequences of these proteins were unknown.  Acquiring these protein sequences 

would allow for the further understanding of how S. degradans degrades agarose. 
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Interestingly, immunolocalization studies suggested that S. degradans attached a 98kDa 

β-agarase to its cell surface (139).  This protein appeared to localize to cell surface 

protuberances that appeared similar to the cellulosomes encoded for by the cellulolytic 

Clostridia (139).  Furthermore, S. degradans cross-reacted with an anti-sera specific for 

the cellulosomes signature protein CipA from C. thermocellum (139). This suggested that 

the agarases from S. degradans may contain dockerin repeats similar to those found in 

cellulases from C. thermocellum that allow for cell surface localization.  

 

It was thought that the agarases of S. degradans contained domains that allowed these 

proteins to efficiently degrade agarose and, perhaps for some, to be attached to the cell 

surface. Because a feasible genetic system was not available (e.g. transformation, 

mutagenesis protocols were not established) for S. degradans several alternative 

approaches were utilized to elucidate the protein sequences of these enzymes. These 

included many techniques not previously performed on S. degradans including genomic 

library construction and screening, expression of target proteins in E. coli, genomic 

analysis, proteomic analysis, and a newly developed mutagenic technique capable of 

creating site specific null mutations in S. degradans. This is the first report of an efficient 

mutagenic technique for use in S. degradans.  The data generated in this chapter have led 

to a model of agarose degradation by several proteins containing unusual GH domains 

and CBM. 
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Materials and Methods 

 

Bacterial strains and plasmids:  Strains and plasmids are described in Table 3.1. S. 

degradans strain 2-40T was grown in minimal medium containing: 2.3% Instant Ocean 

(Aquarium Systems, Mentor, Ohio), 0.5% ammonium chloride and 50 mM TrisCl, pH 

7.6.  Carbon sources were added to a final concentration of 0.2%.  1.5% agar was added 

to solid media.  Cultures of S. degradans were incubated at 30°C.  Escherichia coli 

EC300TM, DH5α-E, and Tuner strains were grown at 37°C in Luria-Bertani (LB) broth or 

agar supplemented with the appropriate antibiotics.  Antibiotics were added to media at 

the indicated concentrations (in µg/ml):  ampicillin (200), kanamycin (50), and 

chloramphenicol (30) where indicated. 

Molecular biology protocols:  DNA manipulations were performed using standard 

protocols (118).  Restriction enzymes and T4 DNA ligase were obtained from New 

England Biolabs (Ipswich, MA).  The pETBlue-2 expression vector was purchased from 

Novagen (Madison, Wis.).  All other reagents and substrates were obtained from Sigma-

Aldrich (St. Louis, Mo.) unless otherwise noted.  Polymerase chain reactions (PCR) were 

performed using a Hybaid PCR Sprint Thermal Cycler and employed either Taq 

(Invitrogen, Carlsbad, CA) or ProofPro (Continental Lab Products, San Diego, CA) 

polymerases using the manufacturer’s recommended conditions.  The nucleotide 

sequence of plasmid DNA or gel-purified PCR products was obtained at the UMBI 

sequencing facility. 

 

IG Choi
Highlight
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GenBank Accession Numbers:  The sequences for agaA, agaB, agaC agaD, agaE and 

galA are reported under the GenBank accession numbers ZP_00067773, Bankit637526, 

ZP_00068378, ZP_00064995, Bankit628083, and ZP_00067772. 

Chromosomal DNA Isolation: A 50ml culture of S. degradans was harvested at OD600 = 

0.5 to 0.8 by centrifugation (8000xg, 10 min). The pellet was resuspended with 4.75ml of 

TE buffer pH8.0, transferred to a CorexTM tube and placed on ice. To this suspension, 

62.5µl of 20% SDS and 12.5µl of a 20% proteinase K solution was added.  This was 

incubated at 37°C for 1 hour. To this solution 600µL of 5M NaCl was added and the 

solution slowly mixed, 375µL of 10% CTAB in 0.7M NaCl prewarmed at 65°C was 

added and the solution incubated at 65°C for 20min.  Six ml of a chloroform isoamyl 

alcohol solution (24:1) was added and mixed by pipeting then centrifuged at 8,000xg for 

15 min.  The aqueous layer was transferred to a fresh tube and extracted with the same 

solution until a minimal amount of debris was present at the solvent interface.  The 

aqueous solution was transferred to a fresh tube and 0.65 volumes of isopropyl alcohol 

were added to precipitate the DNA.  The DNA was collected by spooling onto a glass 

capillary tube, rinsed with 1ml of 100% ethanol, and air-dried for 15 minutes.  The 

spooled DNA was placed into 1ml of TE buffer along with 1µL of an RNase solution 

(100mg/ml) and incubated for 1 hour at 37°C.  The DNA was precipitated with 0.3M 

sodium acetate (final concentration) and two volumes of 100% ethanol.  After incubating 

at -20°C for 30 minutes the precipitated DNA was spooled, washed with 0.5ml of 

ethanol, and air-dried until there was no scent of ethanol.  The DNA was eluted in 1ml of 

TE buffer overnight at 4°C. 
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Construction and initial screen of S. degradans genomic library: The genomic library 

was constructed using a CopyControlTM Fosmid Library Production Kit (Epicentre 

Technologies, Madison, WI) by following the manufacture’s recommended protocol. 

Briefly, randomly sheared DNA were generated by multiple passes through a 10µl glass 

syringe (Hamilton; Reno, NV). Fragments of approximately 40kb were isolated by gel 

extraction using a provided proprietary gel-digesting gelaseTM enzyme. The extracted 

DNA was treated with an end-repair enzyme mix and ligated with Fast-LinkTM DNA 

ligase into the linear fosmid, pCC1FOSTM.  The fosmid was packaged into lambda phage 

using MaxPlaxTM Lambda packaging extracts and used to transfect E. coli EPI300TM.   

 Sequencing of pNE10 insert: pNE10 was isolated and  digested with Sau3A and 

fragments of 5-10Kb were isolated by gel purification.  These fragments were ligated into 

BamHI- digested pUC19 and transformed into E. coli DH5α-E.  Random pUC19 

derivatives were isolated and a partial DNA sequence of the insert obtained by using the 

M13REV (CAGGAAACAGCTATGACC) and the M13(-21) 

(TGTAAAACGACGGCCAGT) primers.  After similarity searches, the nucleotide 

sequence of the ORFs of interest were completed by primer walking using synthetic 

oligonucleotides (Table 3.2).   

Bioinformatic tools: Protein modules and domains were identified in deduced products 

using the Simple Modular Architecture Tool (SMART), pFAM database 

(www.smart.embl-heidelberg.de), and the CAZYsite.  Similarity searches were performed 

using the BLAST algorithm at the National Center for Biotechnology Information (NCBI) 



 

 41 
 

server (www.ncbi.nih.nlm.gov).  Type II secretion signals were identified using the 

SignalP version 1.1 program (www.cbs.dtu.dk/services/SignalP).  Multiple-sequence 

alignments were performed using the ClustalW (www.searchlauncher.bcm.tmc.edu).  

Molecular masses of polypeptide products were estimated using the Peptide Mass Tool at 

the ExPASy server of the Swiss Institute of Bioinformatics (www.us.expasy.org).    

 

Zymograms:  Concentrated culture supernatants of S. degradans were prepared from 

50ml cultures grown at 30°C for 16h in minimal medium supplemented with 0.2% 

agarose as the sole carbon source.  All subsequent steps were performed at 4°C.  Cultures 

were harvested at 10,000 x g for 20 min and the supernatants collected.  Supernatants 

were filtered through a 0.22-µm pore filter and the cell-free filtrates were concentrated 

approximately 100-fold using a centrifugal concentrator with a 10-kDa cutoff filter 

(Millipore, Billerica MA).  

The concentrated culture supernatants were fractionated by SDS-PAGE in an 8% 

polyacrylamide gel supplemented with 0.1% agarose.  Gels were washed twice in 20ml 

Pipes-Triton buffer (20mM PIPES and 2.5% Triton X-100) for 20 minutes at room 

temperature and incubated in PIPES-Triton buffer overnight at 4°C.  Gels were washed 

twice with 20 ml PIPES Buffer and incubated at 42°C for 2 hours.  Zymograms were 

stained with Gram’s iodine solution to identify agarase activity.   

Protein expression and purification:  Genes of interest were amplified by PCR using 

tailed primers (Table 3.2).  Each fragment was digested with the designed restriction 

enzyme, ligated into the pETBlue-2 and transformed into E. coli Tuner or E. coli DH5α-E 
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cells.  A 50ml culture of each transformant carrying a clone of interest was grown at 37°C 

to an OD600 of 0.5 and induced with 1 mM (final concentration) isopropyl-ß-D-

thiogalactopyranoside (IPTG).  After growth for an additional 4 h at 37°C, cells were 

harvested and frozen at -20°C.  His fusions were purified from lysed cells by using Ni-

NTA resin (Qiagen, Valencia CA) according to the manufacturer's recommendations. 

Assay of agarase activity and identification of reaction products:  Reactions with 

purified agarase and agarose were performed in 50 µl reactions containing 40ul of 

purified agarase and 5 µl of 1% agarose.  Neoagarohexaose, neoagarotetraose, 

neoagarobiose and D-galactose (5 µg) were used as standards.  The reactions were 

incubated at 42°C for two hours.  The reaction mixture was applied to a Whatman silica 

gel 60A plate with a 250 µm layer.  The plates were developed with 2:1:1 n-

butanol:acetic acid:water solution and stained with 2:1 ethanolic sulfuric acid: 

naphthresorcinol solution as previously described (47).  Degradation products were 

visualized by baking at 80°C for 10 minutes. 

 

Mass spectrometry:  Culture supernatants were fractionated on 8% SDS-PAGE gels and 

stained with Sypro Ruby Red (Molecular Probes, Eugene OR).  Gel slices of interest 

were excised and chopped into 1-2 mm cubes.  The samples were submitted to the 

Stanford University Mass Spectrometry Laboratory (SUMS) for LC-MS/MS analysis 

following trypsin digestion.  Mascot analysis of the protein fragments was used to 

identify the protein fragments.   
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Immunoblots:  Proteins were fractionated by SDS-PAGE as described above and 

electroblotted onto supported nitrocellulose (0.45µm pore; Osmonics Trevose, PA).  

Membranes were blocked with 1% alkali-soluble casein (Novagen) and incubated with 

mouse anti-His (Novagen).  The membranes were washed twice and incubated with goat 

anti-mouse conjugated horseradish peroxidase (HRP).  The immunoreactive proteins 

were visualized using an ECL detection kit (Amersham Pharmacia Biotech).  

 

Generation of Site Directed Null Mutations:  The procedure used to generate the agaE 

mutants was similar to that previously described (95, 105).  Briefly, the 1kb upstream and 

downstream flanks of the agarase of interest were amplified by PCR with primers 

containing 5’ tails complementary to the ends of an amplified kanamycin resistance 

cassette.  The three products were mixed and a splicing PCR was employed to generate a 

3kb product.  This product was mixed with an actively growing culture of S. degradans 

grown in minimal medium with glucose and allowed to incubate with shaking at 28°C for 

2 hours.  The entire culture was plated onto solid medium with glucose and kanamycin.  

After 3-4 days growth small colonies were observed and streaked for purification onto 

fresh media.  Single colonies from these plates were screened by PCR for the presence of 

the kanamycin resistance cassette confirming the presence and location of the insertion. 
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Table 3.1 
 
Strains and plasmids used 
 

Strain or Plasmid Description or use Source 
E. coli EPI300TM F- mcrA ∆(mrr-hsdRMS-mcrBC) 

φ80dlacZ∆M15 ∆lacX74 recA1 
endA1 araD139 ∆(ara, leu)7697 

galU galK λ- rpsL nupG trfA 
tonA dhfr 

 

Epicentre 

E. coli TunerTM 
(DE3)(pLacI) 

F– ompT gal [dcm] [lon] 
hsdSB (rB

- mB
-; an E. coli 

B strain) with DE3, a λ 
prophage carrying the T7 
RNA polymerase gene, 

lacZY deletion; 
CmR 

Novagen 

E. coli DH5α-ETM F– 80dlacZ M15 
(lacZYA-argF) U169 

recA1 endA1 hsdR17(rk
–, 

mk
+) gal– phoA supE44 – 
thi–1 gyrA96 relA1 

Invitrogen 

pCC1-FosTM copy-control fosmid 
cloning vector; ChlR 

Epicentre 

pET-Blue2TM IPTG inducible expression 
vectore; creates hexa-His 
carboxy terminal fusions 

Novagen 
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Table 3.2 
 
Oligonucleotide primers used 
 
 

Primer Sequence Use 

agaF1 TATTTAAAGAGCCGTAT Primer walking 

agaR1 ATTAATCATTGCCACTGCTT Primer walking 

agaF2 GTTGGAATTCTGGGTTTGC Primer walking 

agaR2 CTCTGCCCATCCACAAAAT Primer walking 

agaF3 GCACTATATAGTCGACGTTTT Primer walking 

agaR4 AGAGTAAGGAGCTATCCATG Primer walking 

agaR3 AGTTGGCAGAGTAATGCGC Primer walking 

agaF2-1 ATGCCGATGTTGTAAGTTA Primer walking 

agaR8 AGACTTGCGCCTTACACAC Primer walking 

agaF7 TTCACTGGCCGTCGTTTTAC Primer walking 

agaF6 GATCGCAATCACCCTTCCAT Primer walking 

agaR7 TGGTAGCATAGAGTTTTTGG Primer walking 

agaF5 GCGTTTAACTCACCAAGATTG Primer walking 

agaR6 TTAGGGATTGGGCAGACT Primer walking 

agaF4 GGATGGTGCAACAGCGTATT Primer walking 

agaR5 GACTACCAACCGAAAGATGC Primer walking 
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agaB-f AACTGCAGATCCATGAAAACCACAAATGC cloning agaB 

agaB-r CCATCGATCTTATCTAGGTTCCACTGCCA cloning agaB 

agaB968R CCATCGATACCTGTGGCAGAGAAGTTG truncation analysis of agaB 

agaB853R CCATCGATGTAGAATCGCACCCAGTCAAT truncation analysis of agaB 

agaB736F CTTGGCGCGCCGGCGCGACGAACAAGGTA truncation analysis of agaB 

agaB1371R CCATCGAATGTACTGGGTGGATTGGTG truncation analysis of agaB 

agaE-f CTTGGCGCGCCGAGTCGCTTTTATCAT cloning agaE 

agaE-r CCATCGATTCTATTTGGCTCAGAAGT cloning agaE 

agaB767R CCATCGATGCGCCAAGGCTGATGCTGT cloning agaE 

agaE-CF CTCTCATCAACCGTGGCGAGGTCGGCGCAAACTGTCA Null mutation of AgaE 

agaE-CR ACACATTGCGATAGTCACGC Null mutation of AgaE 

agaE-NF CCGCTGCGCTGTGAGTATC Null mutation of AgaE 

agaA-CF CTCTCATCAACCGTGGGCTTATTTACGCAGTGTTAGG Null mutation of agaA 

agaA-CR CTCTTTCGCGTTAGCATCTAA Null mutation of agaA 

agaA-NF CAGAGCCTTCTTTACCTGTG Null mutation of agaA 

agaA-NR CGATGATGGTTGAGATGTGTTTATGTCTGATGGCTAAACGA Null mutation of agaA 
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Results 

 

Development of an S. degradans Genomic Library  

 
A genetic approach was undertaken to identify the agarases encoded by S. degradans.  S. 

degradans was initially assessed for the use of common genetic tools, such as 

electroporation, conjugation, and transposon mutagenesis.  These tools, unfortunately, did 

not function in S. degradans. Consequently, genomic libraries of S. degradans were 

expressed in E. coli and screened for agarolytic activity as indicated by an agar pitting 

phenotype. Initially, the libraries were constructed in the cosmid pWEB as well as 

pACYC184 and pBR322. Pitting colonies were not identified in these libraries after 

extensive screening (3-5x genome coverage). It was surmised that the agarases encoded 

by S. degradans might be toxic to the E. coli host and thus not detected.   

 

Because the previous vectors were multi-copy plasmids it was thought that reducing the 

copy number might reduce the expression of any potentially toxic gene products.  This 

was accomplished using a fosmid genomic library constructed in a beta-trial version of 

pCC1FOSTM   (gifted from Epicentre Technologies). This vector could be maintained as a 

single or multicopy plasmid in E. coli EPI300 by the absence or presence of a proprietary 

inducing agent.  Pitting colonies, indicative of the hydrolysis of agar, were observed in 

the pCC1-240-NE genomic library at a frequency of 1.7x 10-3 when cells were grown 

under single copy conditions for the fosmid.  This was the expected frequency for a 
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single gene in this library. This library was subsequently used to identify multiple CP 

degrading E. coli clones.  E. coli EPI300 transfectants capable of degrading chitin, 

pectate, starch, cellulose, β-glucan and xylan were identified in multiple screens of this 

library (70). A total of nine transformants that pitted agar were identified in multiple 

library screens.  Agarase positive clones were not identified during multi-copy 

conditions.  In fact, growth of multiple randomly selected clones (17/20) was inhibited 

under multi-copy conditions.  E. coli EPI300 (pNE10) pitted agar plates the quickest and 

was chosen for further analysis.   

 

Identification of agaA and agaB 

 

Phenotypic instability of E. coli pNE10 was observed as spontaneous agarase negative 

colonies appeared at a high frequency (See Appendix I).  This precluded the use of 

transposon mutagenesis to identify the agarase encoded by pNE10. The agarase encoding 

nucleotide sequence was, therefore, obtained by random sequencing of pNE10.  Three 

ORFs that were likely involved in the degradation of agar were identified (Table 3.3). 

The first, agaA, encoded a deduced product of 776 amino acids (aa) with a predicted 

molecular weight (MW) of 87kDa.  AgaA was 44% identical and 62% similar to a β-

agarase from Vibrio sp. strain JT0107 (SR6651).  The second ORF, agaB was predicted 

to encode a 593 aa product with a MW of 64kDa.  AgaB was 54% identical/69% similar 

to the β-agarase from Microbulbifer sp. JAMB-A7 (BAC990221).  agaA appeared to be 

divergently expressed from agaB from a shared promoter region.  The third ORF, galA, 
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was 304 bp downstream of agaA.  It encoded an 859 aa deduced product with a predicted 

MW of 97kDa that exhibited 30% identity and 45% similarity to the β-galactosidase from 

Clostridium perfringens (BAB80972.1).  PCR primers were constructed and used to 

screen the remaining eight agarolytic E. coli ECI300 clones for the presence of agaA and 

agaB. Each of the clones yielded products consistent with the presence of agaA and agaB 

indicating that similar fragments were present in each clone.  However, the agarase 

activity observed for E. coli EC300 (pNE10) did not account for the entire activity 

observed in supernatants of S. degradans.  The supernatant contained an additional 

approximately 100kDa protein, suggesting, the presence of other unidentified agarases 

encoded by S. degradans (Figure 3.1). 

 

Genomic Sequence of S. degradans  

 

Concurrently with the identification of agaA, agaB, and galA by conventional library 

screens, a genomic sequencing project was initiated with the US Department of Energy.  

Nucleotide sequence was derived by random shotgun sequencing of the pCC1-240-NE 

genomic library described in the previous section.  This library was used because it 

represented the most complete assemblage of S. degradans genomic DNA as indicated by 

the various complex polysaccharide degrading clones, including agarases, detected. 

Multiple unfinished versions of this data were made available throughout the project. 

Fragments of agaA and agaB were identified; however, they were located at the ends of 

two different contigs.  
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Figure 3.1 

 

Zymogram analysis to detect agarase active proteins in cell lysates of E. coli 

(pNE10) 

 

A cell lysate of E. coli (pNE10) was fractionated on an agarose zymogram and compared 

to a concentrated culture supernatant of S. degradans. The proteins were refolded in gel, 

incubated and stained with an iodine solution to detect agarase depolymerizing proteins.  

Prestained molecular weight standards (left) were used and marked on the gel before 

iodine staining.  
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 The sequences derived from pNE10 were used to link these two contigs.  The completed 

genomic sequence of S. degradans became available in February 2005.  It currently exists 

as one contiguous strand of DNA assembled in a linear unclosed state. The completed 

genome is 5.05 Mb constructed from sequence with 9x coverage. Currently there are 

3982 open reading frames. The %G+C content is 45.8%.  

 

The data generated with the pCC1-240-NE genomic library has allowed for the prediction 

of enzymes from various complex polysaccharide (CP) degradation pathways including 

chitin (68-71), cellulose, β-glucan, xylan (LE Taylor; unpublished data) and alginic acid 

(2), as well as multiple predicted CP degrading enzymes. The annotation data obtained 

from Computational Biology Program at Oak Ridge National Labs led to the prediction 

of 130 proteins involved in the degradation of CPs.  These ORFs appeared scattered 

through out the genome in small loosely defined gene clusters.   

  

Identification of candidate agarases in the S. degradans genomic 

sequence 

 

Previous studies indicated that S. degradans secretes at least three agarases; however, 

only two candidate agarases, AgaA and AgaB, had been identified in the preceding 

genomic library screen.  Surprisingly, the annotated genomic data did not predict the 

presence of any putative agarases.  Using the agarase protein sequences available in the 
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GenBank database, three additional predicted agarases were identified by BLAST 

similarity searches.   AgaC was predicted as a 86 kDa protein sharing 38% identity and 

55% similarity to a β-agarase from Pseudoalteromonas atlantica (AAA25696). AgaD 

had a predicted MW of 89 kDa and shared 43% identity and 60% similarity to the Vibrio 

sp. JT0107 β-agarase (S46651). AgaE was the largest agarase encoded by S. degradans 

of 146 kDa and shared 60% identity and 72% similarity 42% to a β-agarase from 

Microbulbifer sp. JAMB-A7 (Table 3.3). This data suggested that S. degradans may 

produce five agarases, indicating redundant activity for at least some enzymes.   

Genomic arrangement of agarase genes encoded by S. degradans 

 

Upon the availability of the completed genomic sequence of S. degradans it was found 

that the five putative agarases were located in two regions of the genome. The first region 

(nt1470946-nt1484318) (Figure 3.2) contained the aforementioned agaB, agaA and galA.  

Additionally, a tandem repeat downstream of agaB was identified (Dr. Ilya Borovich, 

personal communication).  Other proteins predicted to function in the degradation of agar 

were not identified adjacent to these genes.  The second region (Figure 3.3) was larger 

(nt3304997-nt3338165) and contained several genes conserved in other agarolytic 

organisms. This area of 33.2kb was defined simply by the presence of agaD, agaC, agaE, 

and other predicted proteins conserved in agarolytic organisms. This included an apparent 

operon containing several dehydrogenases and a conserved hypothetical protein. A nearly 

identical dehydrogenase operon is encoded by Microscilla PRE1 (148) while a similar 

conserved hypothetical protein is encoded by Microscilla PRE1 (148), Pirellula strain 1 

(54) and multiple unidentified soil strains (138), all of which are agarolytic. 
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Table 3.3 
 
Predicted agarases identified in S. degradans 
 

ORF GenBank 
accession 
number 

Molecular 
Weight 
(KDa) 

Closest match GenBank 
accession 
number  

% 
Similarity 

% 
Identity 

agaA ZP_003152
51 

87 β-agarase 
Vibrio sp. str. 

JT0107 
 

S46651 
 

62 44 

agaB AAT67062 64 agarase 
Pseudomonas 

sp. ND137 
 

BAB8871
3 
 

69 54 

agaC ZP_000315
652 

 

86 β-agarase 
Pseudoalterom
onas atlantica 

 

AAA256
96 

55 38 

agaD ZP_000315
360 

 

89 β-agarase 
Vibrio sp. 
JT0107 

S46651 60 43 

agaE ZP_000315
657 

 

146 β-agarase 
Microbulbifer 
JAMB-A94 

BAD868
32 
 

72 60 

 
Molecular weights were calculated using ExPASy proteomics server molecular weight 
calculator; Closet match, % similarity and % identity were calculated by using the 
BLAST algorithm. 
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Figure 3.2 

 

Gene arrangement of agaA and agaB region 

 

Sequences derived from the genomic annotation of S. degradans were assembled.  

Annotation of each predicted protein is noted above the predicted open reading frames 

(arrow).  Inverted and direct repeats are also noted (arrow heads).  The position of the 

genes is noted by nucleotide (nt) number. 
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Figure 3.3 

 

Gene arrangement of the agaD, agaC and agaE region 

 

Sequences derived from the genomic annotation of S. degradans were assembled.  

Annotation of each predicted protein is noted above the predicted open reading frames 

(arrow).  Inverted and direct repeats are also noted.  The position of the genes is noted by 

nucleotide (nt) number 
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The function of these predicted proteins in the degradation of agar is unknown. The 

agarase system of S. degradans appears to be loosely organized lacking operons or 

defined gene clusters. Although it does appear that other uncharacterized proteins may be 

involved in the degradation of agarose. 

 Identification of domains present in the agarases encoded by S. 

 degradans  

 

The five predicted agarase identified in S. degradans allowed for the first time the 

analysis of several agarases from the same organism.  It was thought that these enzymes 

would share conserved sequences that could be used to define their glycoside hydrolase 

(GH) domains.  Whole protein alignments, however, demonstrated that the agarases from 

S. degradans shared little primary amino acid sequence similarity. 

 

In order to simplify these alignments small sequence blocks of each predicted agarase 

were aligned. The blocks consisted of overlapping 50-200 amino acid regions. These 

analyses revealed that the agarases from S. degradans contained three distinct regions of 

shared sequence similarity.  Region 1 was defined by the amino terminal region of AgaB 

that was not similar to the other agarases encoded by S. degradans. Region 2 was defined 

by the alignment of AgaA and AgaD. Region 3 was defined by the alignment of AgaC 

and AgaE.  To verify these results, each agarase in the GenBank database was aligned to 

Region 1, Region 2 or Region 3 and categorized based on sequence similarity.  It was 
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found that each agarase tested contained one of these three regions that existed as 

contiguous domains in which size and sequence were conserved.  It was assumed that 

these regions contained the catalytic GH domains of these agarases.  Later, these domains 

were defined as GH16 (Region 1; AgaB), GH50 (Region 3; AgaA, AgaD)  and GH86 

(Region 2; AgaC, AgaE) (65, 66). 

 

Additional domains were also identified in the agarases encoded by S. degradans. 

Unusual for agarases two type 6 carbohydrate binding modules (CBM6) were identified 

within the carboxy terminus region of AgaB, and three CBM6 were located within the 

amino terminus of AgaE. The CBM6 of AgaE were separated by repetitive linker 

sequences consisting of (Glu-Pro)17 and (Pro-X)4.   

 

Small sequence motifs were also detected in the agarases from S. degradans. AgaE 

contained four aspartic acid rich repeats termed thrombospondin type 3 (Tsp-3) repeats 

between aa 511 and aa 643 (B. Henrisatt personal communication). The function of these 

repeats is unknown.  Secretion signals were predicted for each candidate agarase by 

SignalP 1.1 suggesting either a periplasmic or freely secreted localization for these 

proteins.  Additionally, a lipoprotein acylation site was identified within AgaC by the 

DOLOP algorithm.  This suggested that AgaC could be attached to the outer-membrane 

of S. degradans.     
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 Figure 3.4 

 

GH16, GH50 and GH86 are found in all known and predicted agarases 

 

Agarase sequences were retrieved from the GenBank database with the gi numbers noted.  

Multiple sequence alignments are graphically displayed as a radial tree to shown that 

each known or predicted agarase can be categorized in one of three GH families: GH16, 

GH50 or GH86. Agarases from S. degradans are labeled as AgaA, AgaB,  AgaC, AgaD, 

and AgaE.  Sequence alignments and tree construction were performed with ClustalX. 

The radial tree was visualized with TreeView1.1 GH16: (top tree, clockwise) 37222130, 

uncultured bacterium; 14518337 Microscilla PRE1; 6724084, α-agarase, Alteromonas 

agarilytica; 37665541, β-agarase, Microbulbifer JAMB-A7; 50344693, β-agarase, 

Microbulbifer JAMB-A94; 58219335, β-agarase Pseudomonas sp. ND137; 6650393, β-

agarase, Z. galactanivorans; 6073784, β-agarase, Aeromonas sp; 1220461, 

Pseudoalteromonas atlantica; 17826962, β-agarase Pseudomonas sp. ND137; 6650395, 

β-agarase, Zobellia galactanivorans; 14484972, Microscilla PRE1; 30043922, agarase, 

Pseudomonas sp. CY24; 21221895, Streptomyces coelicolor; GH50 (bottom left, 

clockwise):  7452166, β-agarase, Vibrio sp. JT0107; 13518967, β-agarase Vibrio sp 

0107;6469474, S. coelicolor; 3722162 and 37222120 and 37222187, uncultured 

bacterium;37222186 and 37222123 and 37222160 and 37222154, uncultured bacterium; 

GH86: (bottom right, clockwise) 14518314 & 14484949, Microscilla PRE1; 32443741, 

Pirellula strain 1; 14518320, Microscilla PRE1; 57864209, β-agarase, Microbulbifer 

JAMB-A94;  94831, β-agarase P. atlantica;. 
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Figure 3.5 

 

Domains and sequence motifs identified in the predicted agarases encoded by S. 

degradans   

 

AgaA, AgaB, AgaC, AgaD, AgaE (top to bottom) all contained predicted Type II 

secretion signals (filled box) at their amino-terminus.  AgaC containing an additional 

putative lipoprotein acylation site (open box). CBM6 domains (triangles) were identified 

in AgaB and AgaE by SMART domain analysis.  GH domains were established by 

multiple sequence alignments. GH50 domains were present in AgaA and AgaD.  GH86 

domains were found in AgaC and AgaE and a GH16 domain was present in AgaB.  

Repetitive linker sequences (striped boxes) and four thrombospondin type three repeats 

(arrows) were present in AgaE.  The sequences of the four thrombospondin type three 

repeats are shown below.  The highlighted residues are conserved. 
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Tsp-1 DGDNDGVPDTSDNC 
Tsp-2 DTDEDGINDKIDQC 
Tsp-3 DGVLNGADQCGNTP 
Tsp-4 DADNDGVANSEDTC 
 

 AgaA 

 AgaB 

 AgaC 

 AgaD 

    AgaE 
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Biochemical Activity of the Predicted Agarases 

 

The previous analysis indicated AgaA, AgaB, AgaC, AgaD, and AgaE contained GH 

domains suggestive of agarase activity. In order to determine whether these proteins were 

active against agarose, attempts were made to express each agarase encoded by S. 

degradans in E. coli as carboxy-terminal His-tagged derivatives.  The purified proteins 

could then be tested for agarase activity by zymography and in vitro.  

 

AgaB-His was purified from E. coli Tuner pAgaB.  The purifications revealed two 

products, an expected 65kDa product and an 85kDa derivative (Figure 3.6) in Western 

blots. The agaB-his construct carried by pAgaB was delimited by the translational start 

and stop signals of the vector and should have only produced a 65 kDa product.  

Sequencing confirmed that the plasmid carried the correct insert.  Surprisingly, agarase 

activity was associated with the larger 85kDa product in zymograms (Figure 3.7).  The 

anomalous molecular weight estimation suggested that AgaB-His may be modified in an 

unknown fashion.  Extensive analyses of this apparent modification were performed (See 

Appendix II).  It is currently thought that the anomalous molecular weight derivative may 

be due to a non-denatured region of AgaB-His. 

 

 The products of AgaB-His activity upon agarose were identified by thin layer 

chromatography (TLC) (Figure 3.8).  Typical of β-agarase I activity, neoagarotetraose 

and neoagarohexaose were released from agarose.  Neoagarobiose could not be detected 
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after extended incubations.  This activity defines AgaB as a β-agarase I enzyme a major 

depolymerase of this system. 

 

AgaE-His was similarly prepared and analyzed.  Multiple products were detected in 

immunoblots including the expected 146kDa protein and apparent degradation products 

(Figure 3.6). AgaE-His derivatives with masses of 100 and 86 kDa exhibited agarase 

activity, but activity was not detected for the full length protein (Figure 3.7).  It was 

unclear whether the absence of activity for the full length protein represented a precursor 

state of the enzyme or a failure to renature the full length polypeptide.  Similar patterns of 

agarase activity were detected in lysates of E. coli (pAgaE).  Alternative translational 

initiation sites that could produce the observed derivatives were not present within agaE. 

The degradation of AgaE-His was unaffected by a commercially available protease 

inhibitor cocktail that lacked chelating agents (Sigma P8849). The resulting agarase 

active derivatives of 85kDa and 100kDa could suggest that the processing had occurred 

between the CBM6 perhaps at the sites of the repetitive linker sequences.  Cleavage at 

these sites would yield products consistent with these observed molecular weights. 

  

The products released by AgaE-His activity against agarose were determined by TLC.   

Only neoagarobiose was detected after overnight incubation with agarose (Figure 3.8).  

This activity is consistent with that of a β-agarase II capable of producing neoagarobiose 

from neoagaro-oligosaccharides in this case polymeric agarose. 
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The previous data suggested that the all of the CBM6 of AgaE were not necessary for the 

degradation of agarose in zymograms as spontaneously arising truncated derivatives of 

AgaE not containing the CBM6 domains were agarase active.  To determine whether they 

were necessary for the degradation of agarose by AgaB multiple truncated derivatives of 

AgaB-His were constructed (Figure 3.9).  Colonies expressing the derivative of AgaB-

His were patched onto plates containing IPTG to induce expresson and compared to 

colonies expressing full length AgaB-His.  Colonies containing the predicted full length 

GH domain pitted agar plates to the same extent as the full length AgaB-His.  This 

indicated that the GH domain of AgaB was functional independently of the CBM6 and 

further supported the analysis presented previously that AgaB contained a functional 

GH16 domain.  

 

The activities of AgaA, AgaC and AgaD could not be established as their expression 

appeared toxic to E. coli Tuner cells.   Each was cloned in non-expressing E. coli DH5α-

E but E.coli Tuner transformants could not be obtained under any condition.  Similar 

results were obtained when only the GH50 domain of AgaA was cloned and tested in this 

expression system. Because of these results alternative strategies to determine their role 

in the degradation of agarose were used. 
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Figure 3.6 

 

Purification of AgaB-His and AgaE-His from E. coli Tuner 

 

AgaB-His and AgaE-His were expressed in E. coli Tuner and purified on a Ni-NTA 

column under denaturing conditions.  The samples were fractionated on an 8% SDS-

PAGE gel, electrotransfered to nitrocellulose membranes and probed with anti-His 

antibody.  AgaB-His purification (left) yielded two products of 65kDa along and 85kDa.  

AgaE-His purification (right) yielded the expected 146kDa product along with multiple 

apparent degradation products of various smaller sizes. Molecular weight standards are 

noted in kDa. 
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Figure 3.7 

 

AgaB-His and AgaE-His degrade agarose in zymograms 

 

Purified AgaB-His and AgaE-His were fractionated on an agarose zymogram, refolded in 

gel, incubated then stained with an iodine solution to detect depolymerized agarose.  

These samples were compared to the pattern of activity observed in samples of a 

concentrated S. degradans supernatant (left).The supernatant (left) contained three 

predominant active proteins of approximately 100kDa, 85kDa and 60kDa.  The activity 

of AgaB-His (middle) was associated with the unexpected 85kDa protein. Multiple active 

proteins were observed with AgaE-His (right).  The full length 146kDa protein did not 

retain activity but three apparent degradation products of 100kDa, 85kDa and 42kDa 

were agarase positive. 
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Figure 3.8 

 

Reaction products released from agarose by the activity of AgaB-His or AgaE-His 

 

Reactions composed of agarose and purified agarase were incubated for two hours with 

AgaB-His or 1-2 days with AgaE-His.  The sugars released by the degradation of agarose 

by AgaB-His and AgaE-His were resolved by TLC and compared to sugar standards. 

Samples: D-Galactose, lane 1; neoagarobiose, neoagarotetraose, and neoagarohexaose, 

lane 2, top to bottom; whole cell lysate of S. degradans lane 3; AgaB-His reaction, lane 

4; AgaE-His reaction from a separate TLC plate, lane 5.   
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Figure 3.9 

 

Analysis of the agarase activity of truncated derivatives of AgaB-His 

 

Derivatives of AgaB-His were constructed and expressed in E. coli Tuner.  The colonies 

were patched onto solid media containing IPTG to induce expression.  Agarase 

expression was observed as pitting (+) or non-pitting colonies (-).  The modules present 

in AgaB are shown.  Solid lines below indicate the regions included in the truncated 

derivatives.  Legend: Secretion signal, black box; GH16 domain, spotted rectangle; 

CBM6 domains, triangles; regions included in derivatives are noted by the line below 

AgaB.
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Detection AgaB, AgaC, and AgaE by mass spectrometry 

 

Because previous attempts to express AgaA, AgaC and AgaD did not succeed in E. coli 

alternative approaches to characterize the agarases produced by S. degradans were used.  

This included a concerted effort by multiple members of the Hutcheson and Weiner 

laboratory to identify the proteins secreted by S. degradans during growth with a 

complex polysaccharide as a sole carbon source.  Cell free supernatants were analyzed 

for the constituents by HPLC coupled tandem mass spectrometry.  These initial trials 

detected AgaB, AgaC and AgaE in supernatants from cultures grown with agarose as a 

sole carbon source (L. Taylor, unpublished results).  Interestingly, AgaE was also 

detected in supernatants from cultures grown with glucose as the sole carbon source.  

Unfortunately, these samples were excessively complex and contained proteins that were 

not predicted to be secreted (e.g. DNA polymerase). This analysis, furthermore, did not 

allow for the assignment of specific agarase activity to the detected proteins.  For these 

reasons a targeted survey of the agarase active proteins in culture supernatants was 

performed. 

 

A selective survey of agarase active proteins was performed to decrease the complexity 

of the samples analyzed.  Identical samples were fractionated on an SDS-PAGE-agarose 

gel and on a separate agarose zymogram gel.  The 85kDa and 100kDa bands from the 

SDS-PAGE-agarose gel that corresponded to active bands in the zymogram were excised. 
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A 150kDa band was also excised and included in the analysis.  These samples were 

analyzed by HPLC Tandem MS/MS following trypsin digestion (Table 3.4). The 

molecular weights of the detected fragments were used to search the non-redundant 

GenBank database which contained the predicted protein sequences from S. degradans. 

Using this technique multiple proteins were detected. The probability (P) of a random 

match was calculated by (-10*Log(P)) for each detected fragment.  Individual ions score 

>52 indicate identity or extensive homology (p<0.05).  Only proteins with ions scores 

greater than 50 were reported. Keratin, a common contaminant in dust, was detected, but 

not reported in the table of results. Each of the detected proteins had a minimum of two 

protein fragments identified. Three proteins were identified in the 85kDa band, AgaC, 

CbmX and PecX. This data suggests that AgaC is responsible for the enzyme activity 

observed at 85kDa as the Cbm protein did not contain a predicted GH domain and PecX 

contained a well conserved pectate lysase domain. The 100kDa band revealed five 

proteins: a xylanase, CbmX, and 3 distinct TonB dependent receptors. A predicted 

agarase was not detected at this molecular weight.  The xylanase detected did not encode 

for a GH domain typical of agarase enzymes. The agarase responsible for this activity 

remains unknown. The 150kDa band revealed AgaE and a TonB dependent receptor.  

Although agarase activity was not present at this molecular weight it indicates that AgaE 

is produced by S. degradans. 
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Table 3.4 
 
Proteins identified by mass spectrometry in cultures supernatants of S. degradans 
 

 

 

 

 

 

 

 

 

A concentrated culture supernatant was fractionated on an SDS-PAGE gel and specific gel fragments were excised and 

analyzed by Tandem MS/MS.  Queries matched refer to the number of protein fragments that were detected per protein.  Ions 

score is -10*Log(P), where P is the probability that the observed match is a random event.  Individual ions score >52 indicate 

identity or extensive homology (p<0.05).  Scores below 50 were not reported.  Only protein fragments with high similarity to 

proteins encoded by S. degradans are included e.g. common contaminants such as keratin were not reported in this table.    

Gel Slice Protein 
Identified 

Predicted 
MW 

Queries 
Matched 

Ions Score Predicted 
Function 

85kDa 2478 73 3 196 CBM4_9 
 2752 75 2 88 Pectate 

Lyase 
 AgaC 86 2 65 Secreted 

Agarase 
100 1168 58 5 234 TBDR 

 2478 73 5 193 CBM4_9 
 1167 101 3 137 TBDR 
 2607 98 2 89 Xylanase 
 862 100 1 54 TBDR 

150 AgaE 147 32 772 β-AgaraseII 
 2477 131 2 64 TBDR 
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Construction of null mutations in S. degradans 

 

The lack of efficient genetic tools to create mutations in S. degradans hindered the 

progress of identifying other agarolytic proteins in S. degradans.  It was unknown if 

AgaA or AgaD were expressed by S. degradans or if they were necessary for the 

degradation of agar. Recently, a method for the use of double stranded linear DNA to 

generate site specific null mutations was reported for use in naturally competent 

Acinetobacter spp (95). These organisms use so-called Com proteins to assemble a type 

four pilus structures that bind and imports linear DNA. Four genes predicted to act as 

type four pilus biogenesis proteins were identified in S. degradans (nt 1079246-1083698) 

(S. Hutcheson, personal communication).  Three of these predicted proteins 

(ZP_00315067) were similar in sequence to several Com proteins identified in Bacillus 

spp. suggesting that S. degradans was naturally competent. 

 

To test whether S. degradans was naturally competent a protocol similar to that used with 

Acinetobacter spp was attempted using agaE (Figure 3.10). First, a linear double stranded 

DNA fragment was constructed by PCR.  The flanking sequences of agaE were amplified 

from genomic DNA by PCR using primers with 5’ tails complementary to the ends of a 

kanamycin resistance cassette.  The upstream and downstream products were spliced by 

PCR to the cassette creating a linear double stranded product.  The desired spliced 
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products of 3kb along with multiple larger and smaller products were typically present 

(Figure3.11) after splicing reactions. 

 

Next, a transformation protocol for S. degradans was optimized with respect to culture 

conditions.  An overnight culture of S. degradans was used to inoculate a fresh culture 

(500µl) and allowed to grow for 4.5 hours.  To this culture 100µl of the splicing PCR 

reaction was added.  The culture was incubated for two additional hours then plated onto 

selective media containing kanamycin and glucose. A control transformation not 

containing DNA was included. 

 

 The resulting transformants were screened for the presence and location of the 

kanamycin resistance cassette by PCR. Primers specific for the kanamycin resistance 

cassette and the flanking sequences were used to determine whether the transformation 

and homologous recombinational event had occurred (Figure 3.11). This revealed that the 

kanamycin cassette specifically integrated into the genome of S. degradans within the 

agaE gene. Typical transformation frequencies were only slightly greater than that of 

spontaneous mutants (Table 3.5). This suggested that further optimization of the 

transformation protocol may be necessary for larger scale application of this method. 

This construct was confirmed through the use of an anti-AgaE antisera to be discussed in 

the following chapter, which did not cross-react with agaE deletion mutants.  Using this 

method a null mutant of agaE was acquired and demonstrated for the first time the 

natural competency of S. degradans.  This method was repeated and a null mutation of 

agaA was also acquired. 
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The agaA and agaE null mutants of S. degradans shared similar phenotypes.  Both were 

unable to grow on solid media only containing agar as a carbon source while they did 

grow on solid media containing glucose and agar.  The colonies slightly pitted agar 

plates, but much less than that observed for wild type S. degradans.  Furthermore, when 

analyzed by zymography, cellular lysates of the agaE and agaA deletion mutants were 

similar to those of wild type S. degradans.  This suggested that neither AgaA nor AgaE 

were required for the depolymerization of agarose, but likely required for the metabolism 

of agar.  Interestingly, null mutations of agaB, agaC and agaD were not acquired 

although similar protocols were attempted for each for unknown reasons.  Although it is 

possible that these mutations could lead to lethal phenotypes it is more likely that the 

protocol described above requires further optimization to increase the frequency of 

recombination. 
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Figure 3.10 

 

Generation of double stranded linear DNA to transform S. degradans 

 

The DNA fragment was generated by splicing PCR.  First a 1kb flanking region was 

amplified from the 5’ and 3’ regions of agaE using the primer pairs A, X’ and B, Y’. 

These regions were designed to have tails complementary to the 5’ and 3’ region of a 

kanamycin resistance cassette noted in black (top). These products were mixed with a 

kanamycin resistance cassette (KanR) containing regions complementary to X’ and Y’ 

denoted as X and Y (middle). A splicing PCR was performed using primers A and B 

generating a linear fragment containing the KanR cassette in place of AgaE (bottom). 
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Figure 3.11 

 

Splicing PCR reaction to replace agaE and confirmation of the agaE and agaA 

deletion mutants 

 

 Splicing PCR reactions were performed and the resulting products fractionated by 

agarose gel electrophoresis (left). The entire mixture was used to transform a culture of S. 

degradans.  The resulting kanamycin resistant colonies were screened by PCR for the 

correct construct using primers Y’ and B.  The splicing reaction (left) contains multiple 

fragments including the desired 3.2kb product. Lane: 1 and 2 splicing PCR reaction; 3, 

splicing PCR reaction lacking the kanamycin resistance cassette.  The confirmatory PCR 

detected the desired 2kb product for positive recombinants and an apparent false priming 

site for both negative and positive yielded a 1.5kb product.  Lanes: 4 and 6 positive 

recombinant for agaA:kan; 5 negative recombinant.  Lanes: 7and 8 Cell lysates of the 

agaA (lane 7) and agaE deletion mutants (lane 8) were fractionated on an agarose 

zymogram.  Similar patterns of degradation were noted for both. 



 

 85 
 

2kb

3kb

4kb
5kb
6kb
7kb
8kb

1.6kb

1kb

1 2 3

2kb

3kb

4kb
5kb
6kb
7kb
8kb

1.6kb

1kb

4 5 6 7 8



 

 86 
 

Table 3.5 
 
Frequency of recombination 
 

Gene KanR 
Frequency 

Spontaneous 
KanR 

Frequency 

Recombinants/
Spontaneous 

Null 
Mutation 
Generated 

agaA 6.5x10-6 3.4x10-6 2:1 + 
agaB 6x10-6  2:1 - 
agaC 3x10-6  1:1 - 
agaD 3x10-6  1:1 - 
agaE 6x10-6  2:1 + 

Splicing reactions were used to transform S. degradans. Cultures were plated in the 
absence of selection to titer each transformation mixture.  Kanamycin colonies were 
scored.  KanR frequency = KanR colonies/titer.  Spontaneous KanR frequency was 
generated by plating and scoring 5 transformation cultures lacking linear DNA plated 
onto selective or non-selective media. Spontaneous KanR frequency = KanR resistant 
CFU/ total CFU on non-selective media.  Recombinants/spontaneous is the approximate 
ratio between KanR resistant CFU/ spontaneous mutants.  Null mutants generated 
describes whether mutants were isolated and confirmed by PCR.  
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Discussion 

 

Previous data suggested that S. degradans degrades agar using multiple secreted 

hydrolytic proteins (140). The data presented in this chapter identified for the first time 

five agarases encoded by S. degradans. Upon the availability of the genomic sequence it 

was noted that the agarases encoding genes were found in two distinct regions of the 

genome.  These regions appeared to correspond with inverted and direct repeats 

suggestive of areas of lateral gene transfer (Ilya Bororvich, personal communication).  

Further study into the conserved regions of agarase or other hydrolytic enzymes in other 

organism is needed to further support this observation.  The agarases encoded by S. 

degradans contained newly established catalytic domains, GH16 GH50 and GH86.  

These domains were identified using multiple amino acid sequence alignments.  Since 

this initial observation similar reports have been made by other research groups (5, 6, 76).  

S. degradans is the only organism known to encode these three GH domains. This 

suggests that this organism utilizes structurally distinct catalytic domains to degrade 

agarose. This may be advantageous for the utilization of the heterogeneous forms of agar 

found in nature. Biochemical analyses were used along with proteomics and a newly 

described mutagenic technique to categorize the five predicted agarases encoded by S. 

degradans.  This has led to a model of agarase activity utilizing a cascade of enzymes. 

 

The first agarase identified in S. degradans was AgaB.  This protein was expressed in E. 

coli and degraded agarose in zymograms and in vitro yielding neoagarotetraose and 



 

 88 
 

neoagarohexaose. This activity was consistent with that of a β-agarase I.  Furthermore, a 

collaborative study with Dr. Alisdair Boraston at the University of Victoria and Dr. Harry 

Gilbert at the University of Newcastle upon Tyne has shown that the CBM6 domains 

from AgaB bind neoagarohexaose. This is the first report demonstrating the ability of 

CBM6 to bind neoagaro-oligosaccharides. 

 

AgaE also degraded agarose in zymograms releasing neoagarobiose from the degradation 

of agarose in vitro.  This indicated β-agarase II activity. As other sugars were not 

detected in these reactions it is likely that AgaE is an exo-lytic enzyme. The preferred 

substrate for this enzyme may, in fact, be smaller neoagaro-oligosaccharides that are, 

unfortunately, no longer commercially available.  AgaE was also detected in culture 

supernatants by mass spectrometry indicating that it is secreted by S. degradans. A null 

mutant of agaE could not grow in the presence of solely agar, but was still capable of 

degrading agarose. This mutant, however, did pit agar plates when grown along with 

glucose indicating that agaE was not solely responsible for agar degradation but more 

likely the metabolism of the released neoagarotetraose. Furthermore the zymographic 

profile of secreted agarases for the agaE null mutant was similar to that of wild-type S. 

degradans. This suggested that AgaE was required for growth on agarose but not its 

depolymerization and likely is the sole β-agarase II encoded by S. degradans. This 

protein also contained CBM6 that shared high similarity to the CBM6 of AgaB. This 

suggests that the CBM6 of AgaE may also bind neoagaro-oligosaccharides.   

 



 

 89 
 

Similar to AgaE, AgaC also contained a GH86 domain. AgaC was detected by mass 

spectrometry in an agarase active protein gel slice. AgaC was the only protein detected 

from this region that contained a GH domain suggestive of agarase activity. This 

suggested that AgaC is produced by S. degradans and is capable of degrading agarose.  

To date three GH86 domains, including that from AgaE, have been identified in 

functional agarases. This further supports the annotation of this protein as an active 

agarase. 

 

The results presented in this chapter also suggested that AgaA is an active agarase. agaA 

appeared to be divergently transcribed from a common promoter region as agaB 

suggesting the possible co-regulation of these genes. AgaA contained a GH50 domain 

that has only been observed in agarases.    Furthermore, an S. degradans null mutant of 

agaA was not able to grow on agarose as a sole carbon source, but was able to pit agar 

plates if glucose was present.  This suggested that the activity of AgaA is not redundant 

with that of the other agarases produced by S. degradans.  Furthermore, when analyzed 

by zymography the agaA mutant had similar pattern of agarase activity as wild type. For 

these reasons AgaA could represent the single neoagarobiose hydrolase enzyme of this 

system. Because this enzyme was not detected in supernatant of S. degradans it is likely 

to be a periplasmic or cytoplasmic constituent of this system. 

 

AgaD also contained a GH50 domain suggesting agarase activity. However, multiple 

attempts to characterize AgaD including expression in E. coli, mass spectrometry, and 

mutagenesis were not successful. It is currently unknown whether AgaD is expressed by 
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S. degradans and, if so, what its role is in the degradation of agar. It is possible that AgaD 

does not degrade agarose but perhaps a substituted form of this polysaccharide such as 

porphyran. 

 

A model of agar degradation by S. degradans is proposed based on the presented data.  

The agarose depolymerases of this system are most likely AgaB and AgaC.  AgaB 

appears to be a freely secreted enzyme.  This protein could travel away from the cell and 

attach to the agarose polymer by means of its CBM6 domains.  AgaC, alternatively, 

contains a lipobox suggestive of outer-membrane attachment.  This agarase may be 

transiently embedded in the outer membrane of S. degradans then released into the 

extracellular milieu. A similar model of attachment was proposed for the lipoprotein 

pullulanase from K. pneumoniae (116).  It appears that S. degradans has addressed the 

limitations and advantages of secreted versus cell associated enzymes by producing both 

classes enzymes enabling the utilization of both near-by and distant sources of agar.  

Selective pressure on the localization of each β-agarase may indicate how both have been 

maintained.  

 

After the initial degradation of agarose by AgaB and AgaC the released sugars could then 

be degraded by AgaE.  This protein appears to produce neoagarobiose solely.  AgaE 

appears to be the only β-agarase II of this system.  This enzyme is likely a secreted 

enzyme as it was detected in culture supernatants. The neoagarobiose produced by AgaE 

can then be degraded by either AgaA or perhaps AgaD to galactose and 3,6, anhydro-L-

galactose.  It is unknown whether this final step occurs extracellularly, but due to the fact 
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that neither has been detected in concentrated culture supernatants a periplasmic or 

cytoplasmic localization for each protein may exist.  As described, the cascade of 

enzymes utilized by S. degradans to degrade agarose is similar to that previously 

described for P. atlantica. 

 

In this manner the agarase system appears similar in strategy to the chitinase system of S. 

degradans.  Both systems appear to contain freely secreted and membrane bound 

enzymes active against the polymeric substrate.  In both cases one enzyme from the 

system is a predicted lipoprotein: AgaC in the agarase system and ChiB in the chitinase 

system (68).  The final product of the AgaB, AgaC and AgaE extracellular degradation is 

most likely neoagarobiose which may diffuse into the periplasm similar to the dimer, 

chitobiose, produced exocellularly in the chitinase system (68).  Once in the periplasm 

neoagarobiose could be imported into the cytoplasm or degraded to monosaccharides.  

The same ambiguity exists with the chitinase system in which perhaps both may occur 

with chitobiose (70).  Considering that S. degradans appears to encode putative secreted 

β-galactosidases, such as GalA, to degrade, presumably, lactose to glucose and galactose, 

the α-neoagarobiose hydrolase enzyme may also be secreted into the periplasm to 

produce galactose.  This would eliminate the need for a specific neoagarobiose inner-

membrane transporter.  The final products of the agarase and chitinase system are soluble 

monosaccharides, which are further metabolized.  Unlike the chitinase system the agarase 

system yields a sugar, 3,6,-anhydro-L-galactose, whose biochemical fate remains 

unknown.  Although L-conformation sugars are not typically metabolized reports exist of 

the metabolism of L conformation sugars, such as L-fucose, by E. coli.  Furthermore, a 
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mutant of E. coli has been shown to utilize L-galactose as a carbon source (149).  This 

suggests that it is possible that 3,6 anhydro-L-galactose is further metabolized by S. 

degradans. 

 

 

 

 

 

    



 

 93 
 

 
 

Chapter 4: Surface Localization of a β-agarase II in 

Saccharophagus degradans 

 

Introduction 

 

Most microorganisms degrade complex polysaccharides (CPs) by secreting extracellular 

enzymes. The products, soluble sugars, are then imported. Using this strategy, enzyme 

and substrate diffusion away from the cell constitutes a disadvantageous bioenergetic 

loss. To minimize such loss, certain species of terrestrial fungi and gram-positive bacteria 

localize hydrolytic proteins to the cell surface in supra-molecular structures termed 

cellulosomes (12, 13, 21, 120).  These structures have both substrate binding and 

hydrolytic modules to complex cell, substrate, and enzyme (12, 13, 17, 19, 21).   

Analogous systems have not, as yet, been described for marine microorganisms where, 

tidal currents can disperse macromolecules even more rapidly than in terrestrial 

environments. 

 

As on land, communities of gram-negative bacteria and fungi degrade CPs in marine 

environments (24, 28, 100) studies of which have been mostly descriptive. Few 

mechanisms of cell surface (exocellular) enzyme attachment in gram-negative bacteria 

have been described.  One such mechanism uses a recognized amino-terminal sequence 

motif termed a lipobox (116). This site allows the protein to be transiently embedded in 
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the outer-membrane via a post-translational modification whereby a cysteine residue is 

modified with a diacylglycerol group.  The secretion signal is cleaved exposing the 

cysteine.  This residue is then acylated with a fatty acid and embedded into the outer- 

membrane exposing the hydrolytic protein to the extracellular environment (73, 86). This 

mechanism is exemplified by PulA from Klebsiella pneumoniae (34-37, 116). 

 

Other motifs for cell surface display of proteins in gram-negative bacteria exist.  One 

example, found in integral membrane proteins, consists of β-barrels that form multiple 

transmembrane regions (132).  Such a structure is found in the outer-membrane receptor 

LamB that functions in the uptake of maltose and maltodextrins. Another, less frequently, 

reported structure is the GPI anchoring motif.  These regions are post-translationally 

modified with a glycosyl phosphatidylinositol moiety which is then embedded in the 

outer membrane.  An example is the ice–nucleation protein (Inp) from Pseudomonas 

syringae.  The carboxy-terminal site of modification has been determined and used for 

display of multiple fusion proteins (78, 79). 

 

Saccharophagus degradans strain 2-40T (S. degradans) is a rod-shaped aerobic bacterium 

isolated from the surface of decomposing saltwater cord grass, Spartina alterniflora, in 

the lower Chesapeake Bay (7).  S. degradans is related to a group of marine gamma-

proteobacteria adept at degrading complex polysaccharides, a critical function in the 

marine food web (48, 56).  S. degradans can utilize at least 10 complex polysaccharides 

as a sole carbon source including agar, alginate, chitin, cellulose, β-glucan, laminarin, 

pectin, pullulan, starch, and xylan (7, 50, 70, 83).  It is thought to do so through the use of 



 

 95 
 

multiple cell surface hydrolytic enzymes.  In fact, a recent survey indicates that 32 of the 

112 predicted carbohydrases encoded by S. degradans are predicted lipoproteins (L. 

Taylor, unpublished data). 

 

The S. degradans β-agarase system consists of five enzymes designated AgaA, AgaB, 

AgaC, AgaD and AgaE. AgaB and AgaE have been cloned and biochemically 

characterized. Initially, agarose is degraded by the β-agarase I, AgaB, to yield 

neoagarotetraose.  AgaC also appears to degrade agarose, yielding unknown oligomers. 

AgaE, an exolytic β-agarase II, yields neoagarobiose. Deletion analysis indicates that 

AgaE could be the sole β-agarase II. Lastly, according to deletion analysis, neoagarobiose 

may be degraded to D-galactose and 3,6, anhydro-L-galactose by AgaA.  

 

Previous evidence from immunoelectron micrographs and activity assays (126, 139), 

suggested that S. degradans synthesized exocellular agarases.  Subsequent genomic 

analysis revealed that one, AgaC, was a lipoprotein.  The size of AgaC (approximately 

90kDa) was similar to the agarase previously observed in micrographs. It was unknown, 

however, if other agarases encoded by S. degradans were also exocellular.  

 

The present study investigated the possibility that AgaB and AgaE are also exocellular. 

AgaB contains a glycoside hydrolase (GH) 16 domain and two, type six carbohydrate 

binding modules (CBM6), however, no obvious surface anchoring motifs. AgaE contains 

a GH86 domain, three CBM6, and four thrombospondin type three (Tsp-3) repeats. These 

domains bind calcium and mediate protein-protein interactions of the adhesive 
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glycoprotein thrombospondin(87). The function of these repeats in prokaryotic proteins is 

unknown, but could, arguably, mediate the exocellular attachment of proteins via a 

protein-protein interaction. This report describes, for the first time, the cell surface 

localization of the β-agarase II, AgaE. A model for the cell surface localization of AgaE 

is discussed. 

 

Materials and Methods  

 

Bacterial growth media and conditions: E.coli Tuner (Novagen, Madison, WI) was 

grown at 37C on LB agar or broth + 1% glucose and 50µg/ml ampicillin and 30µg/ml 

chloramphenicol. S. degradans strain 2-40T (ATCC43961) was maintained on ½ strength 

Marine Agar: 18.7g/L Difco Marine broth 2216.  Agar (Sigma) was added to solid media 

to a concentration of 1.5%. For growth analysis S. degradans was grown on minimal 

medium consisting of 2.3% Instant Ocean artificial sea salts (Aquarium Systems, Mentor 

OH), 0.1% yeast extract (Difco), 50mM Tris buffer pH7.4 and 0.05% NH4Cl.  Minimal 

media (MM) was supplemented with carbon sources, either glucose or agarose, to a final 

concentration of 0.2%.  All S. degradans cultures were incubated at 27°C on a rotary 

shaker at 225rpm.  

 

Culture and membrane fraction preparation: Broth cultures containing agarose were 

modified to facilitate the separation of cells and agarose. Flasks containing 10 ml of 2% 

agarose were autoclaved and allowed to solidify at room temperature.  Sterile MM was 

pipeted on top of the agarose gel to a final concentration of agarose of 0.2%.  Samples 
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were inoculated. During growth the agarose gel typically broke into many small pieces. 

Cells were harvested at an OD600=0.3 corresponding to logarithmic growth. To harvest 

the cells the agarose was allowed to settle and the liquid portion was decanted into sterile 

50ml centrifuge bottles.  The sample was centrifuged at 2,000 x g to settle residual 

agarose gel and the supernatant decanted to a sterile centrifuge bottle and centrifuged at 

10,000 x g for 15 minutes to pellet the cell portion.  The resulting supernatant was filtered 

through 0.2µM filters (Millipore; Billerica, MA) to remove residual cells.  The cell free 

supernatants were concentrated approximately 100 fold using a centricon filtering device 

with a 15kDa cutoff (Millipore). Portions of the cell pellet were resuspended in 50mM 

Tris buffer pH 7.6 containing 2.3% sea salts (SS buffer), washed 3 times to remove 

residual supernatant then resuspended in Tris buffer pH6.8, boiled for 5 minutes and 

frozen at –20°C.  The remaining cell pellet was used for membrane preparation.  

 

The pellets were washed five times with SS buffer and resuspended in ice-cold SS buffer.  

The suspension was pipeted into a screw cap tube with nearly equal volume of glass 

beads.  The suspension was lysed using a Mini Bead Beater (Glen Mills) following the 

manufacture’s protocol.  The cell lysate was decanted into a clean centrifugation tube and 

centrifuged at 10,000 x g for 10 min at 4°C.  The resulting supernatant was centrifuged at 

150,000 x g for 2 hours at 4°C to pellet the total crude membrane preparations. The 

preparation was washed with SS buffer 3 times. These preparations yielded a clear-blue 

gel along with insoluble material and termed the crude membrane preparation.  The crude 

membrane preparations were resuspended in buffer with 0.5% SDS, boiled for five 

minutes, and centrifuged (16,000xg) for five minutes.  The resulting supernatant was the 
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total soluble membrane preparation. This sample was viscous and appeared very 

hydrophobic.  The resulting insoluble material was resistant to increased amounts of SDS 

(up to 10%), the inclusion of reducing agents, prolonged boiling and sonication. This 

material was discarded.  The remaining samples were tested for agarase activity. 

 

Zymograms: Samples were fractionated by SDS-PAGE in an 8% polyacrylamide gel 

supplemented with 0.1% agarose.  Gels were washed twice in 20ml of 20mM PIPES 

buffer pH6.8 containing 2.5% Triton X-100 (P-T buffer) for 20 minutes at room 

temperature and then incubated in P-T buffer overnight at 4°C.  Gels were washed twice 

with 20 ml 20mM PIPES buffer pH 6.8 and incubated at 42°C for 2 hours.  Zymograms 

were stained with an iodine solution (23) to identify agarase activity.   

 

Generation of anti-AgaB and anti-AgaE antiserum: Antibodies were raised against 

approximately 5mg of purified recombinant AgaE-His (rAgaE-His) and rAgaB-His 

purified as described previously in Chapter 3. The resulting sample was fractionated on 

an 8% SDS-PAGE gel and stained with Coommassie blue.  A 150kDa band 

corresponding to rAgaE-His and a similar band of 65kDa corresponding to rAgaB-His 

were excised from separate gels and washed to remove residual acetic acid.  Antibodies 

were raised by Sigma Genosys in two New Zealand white rabbits. Preimmune sera, four 

production bleeds and a post bleed-out samples were acquired. 

 

Immunoblot Detection of AgaB and AgaE: Cultures containing agarose as a sole 

carbon source were inoculated (0.1% inoculum/ culture) with an overnight culture of S. 



 

 99 
 

degradans grown in MM+glucose.  Samples were taken once the cultures appeared turbid 

at approximately an OD600= 0.2.  The cultures were monitored for growth by OD600. Cell 

lysates and supernatants were harvested by centrifugation at 10,000 x g, washed three 

times in SS buffer and resuspended in Tris buffer pH6.8.  Culture supernatants were 

collected, filtered through a 0.2µm filter (Millipore) and concentrated.  All samples were 

standardized with respect to protein. Equal protein amounts were fractionated on an 

8%SDS-PAGE gel, blotted on 0.2µm nitrocellulose and blocked with 0.1% hydrolyzed 

casein (Novagen), probed with the specific primary antibody then a donkey raised anti-

rabbit secondary antibody (Amersham).  The immunoreactive proteins were visualized 

using an ECL detection kit (Amersham). 

 

Immuno-fluorescence: Cells from an exponentially growing culture (OD600=0.3-0.5) 

were smeared on a glass slide, allowed to air dry then heat fixed.  The samples were 

probed with a 1/10 dilution in PBS of either anti-AgaB or anti-AgaE for 10minutes then 

washed twice in a fresh beaker of PBS for 5 minutes.  The sample was incubated with 

1/32 dilution of a goat raised anti-rabbit FITC conjugated secondary antibody for 5 

minutes then washed.  Samples were observed with a Zeiss Axiophot microscope. 

 

Immunogold transmission electron microscopy: Cultures were grown to specific 

culture conditions then fixed in 0.5% glutaraldehyde for at least 2 hours.  Carbon- and 

Formvar-coated 200-mesh nickel TEM grids were floated on top of drops of samples for 

10 minutes to adsorb cells.  Grids were incubated in 0.05 M glycine for 20 minutes then 

transferred to drops containing a blocking solution consisting of 5% BSA, 5% goat 
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serum, 0.1% cold water fish skin gelatin (Aurion, Costeweg, The Netherlands) and PBS 

pH7.4 for 30 minutes.  Grids were washed twice for 5 minutes in incubation buffer (IB) 

consisting of 0.15% Aurion BSA-cTM and PBS pH 7.4.  Grids were transferred to drops 

containing primary antibody or preimmune serum diluted 1/20 in PBS pH 7.4 for 1 hour 

and washed six times in IB for 5 minutes each.  Grids were transferred to drops of goat 

raised anti-rabbit 10nm gold conjugated antibody diluted 1/30 for 1 hour. Grids were 

washed six times for 5 minutes each in IB then washed twice for 5 minutes each in PBS 

pH7.4.  Samples were post fixed in 2% glutaraldehyde for 5 minutes then washed twice 

in double distilled water for 5 minutes each.  Samples were contrasted with 2% uranyl 

acetate and blotted dry.   

 

Thin Sectioning: Cells were collected by centrifugation and chemically fixed in 0.5% 

glutaraldehyde in SS buffer for at least 2 hours.  Samples were rinsed 3 times with PBS 

for 5 minutes each and dehydrated in an ethanol series of 50% for 15min, 75% for 15min, 

95% for 15min, 100% for 15min, 100% for 20 min and 100% for 30 min then exchanged 

for propelene oxide for 15min and 30 min.  The samples were incubated with propelene 

oxide and a Eponate 12 resin (50:50) overnight then embedded in fresh Eponate 12 resin 

for at least 48 hours. Eponate 12 resin mixture consisted of 45.3% Eponate 12, 27.9% 

DDSA, 24.4% NMA and 2.4% BDMA.  The embedded samples were trimmed and 

mounted onto metal slug mounts.  The mounted samples were planed and semi-thin 

sections were taken and stained with 2% methylene blue to ensure sample was present.  

The planed surface was hand trimmed with a razor blade to a raised trapezoid 1mm x 

2mm.  Ultra-thin sections (gold or silver inference colors) were made with a glass knife, 
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exposed to chloroform vapors and collected onto 200 mesh nickel grids.  Samples were 

immunoprobed and contrasted as described for the whole cell mounts. 

 

Results 
 

Biochemical Evidence of Membrane Associated Agarase Activity 

 
Cell free culture supernatants, washed cell pellets, and crude membrane preparations 

were collected from cultures grown with agarose as a sole carbon source and analyzed by 

zymography to detect active agarases (Figure 4.1). Culture supernatants contained five 

active protein bands: two predominant bands at of 85kDa and 65kDa and two lesser 

bands at approximately 120kDa and 39kDa.  This pattern of activity was distinct from 

that observed in the whole cell lysates, which contained two agarase active bands at 

85kDa and 100kDa, but not at 65kDa. Total membrane preparations revealed three 

agarases of 150kDa, 100kDa, and 85kDa.  The 150kDa and 100kDa proteins were only 

detected in membrane fractions.  In fact, agarase active AgaE has only been detected at 

this molecular weight in membrane fractions.  

 

The active agarases were identified using the predicted molecular weights from the 

available genomic sequence annotation (Table 4.1). The 65kDa band, observed solely in 

the supernatant sample was thought to be AgaB, a β-agarase I with a predicted molecular 

weight of 64kDa.  AgaB was not detected in the membrane preparations. AgaC, the 

predicted 86kDa lipoprotein, was active in all samples including cell lysates, 
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supernatants, and membrane fractions. The active band at approximately 150Kd, solely 

detected in the membrane preparations, corresponded to the predicted size of AgaE. The 

120kDa, 100kD and 39kDa proteins did not correspond to the size of any predicted 

agarase.  These proteins could be proteolytic degradation fragments of an agarase. It is 

unlikely that they are unidentified agarases since the genome has been closed and the GH 

domains of agarases are conserved.  

 

Antibody tools to probe AgaE and AgaB  

 

Anti-serum specific for AgaE (α-AgaE) was prepared against recombinant AgaE-His. It 

was shown by immunoblot analysis to cross-react with a single protein of approximately 

146kDa in whole cell lysates and concentrated culture supernatants of S. degradans 

(Figure 4.2a) Cross-reactive proteins were not observed using preimmune sera.  Likewise 

α-AgaE did not cross-react with whole cell lysates of the expression host E. coli Tuner or 

recombinant AgaB-His. 
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Figure 4.1 
  
 

Zymogram analysis to detect agarase active proteins in culture and cell fractions of 

S. degradans 

 

Concentrated culture supernatants, cell lysates and crude membrane preparations were 

collected from a culture grown with agarose as the sole carbon source and fractionated on 

an agarose-zymogram.  The proteins were refolded in gel, incubated and stained with an 

iodine solution to detect agarase depolymerizing proteins.  Prestained molecular weight 

standards (left and right) were used and marked on the gel before iodine staining. Lanes: 

A, concentrated culture supernatant; B, cell lysate; C, membrane preparation. Agarase 

activity attributed to AgaE is noted by an arrow  
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Table 4.1 
 
 
Agarases identified by zymography in culture and cell fractions of S. degradans 
 
 

Sample Observed MW (kDa) Predicted Agarase MW Predicted Agarase 
(kDa) 

    
    

Culture Supernatants 65 AgaB 64 
 85 AgaC, AgaA, AgaB, AgaD, 

AgaE 
86 

 120 AgaE  
 39 Unknown  
    
 

Cell lysates 
 

85 
 

AgaC 
 

86 
 100 Unknown  
 

Membrane Preparations 
 

 
150 
85 
100 

 
AgaE 
AgaC 

Unknown 

 
150 
86 

               
Observed MW, determined by zymography; Predicted agarases, determined by the predicted molecular weights of the noted 
agarases.  Multiple agarases are listed for regions where ambiguity exists.  Note:  AgaB is expressed as two derivative of 64 
and 86 kDa;    
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The AgaB anti-serum (α-AgaB) was prepared from recombinant AgaB-His, and shown 

by immunoblot analysis to be specific for AgaB (Figure 4.2b).  The α-AgaB serum cross 

reacted with AgaB in whole cell lysates and concentrated culture supernatants from S. 

degradans while the preimmune sera did not.  Furthermore, α-AgaB did not cross-react 

with recombinant AgaE-His or whole cell lysates of E. coli Tuner.  

 

Expression and localization of AgaE and AgaB during the growth cycle  

 

AgaE and AgaB were monitored in cell lysates and culture supernatants by immunoblot 

assays to determine when and where each was present in broth cultures (Figure 4.3).  The 

cultures maintained exponential growth for approximately five hours, followed by a 

characteristic decrease in growth rate when the culture reached OD600=0.8 and 0.9. 

Afterward, the culture entered the stationary phase growth.  

 

In cultures grown with agarose as the sole carbon source, the highest concentrations of 

AgaB were detected in cell lysates during early exponential growth (Figure 4.3b). 

Thereafter, concentrations steadily declined until they were nearly undetectable as the 

cultures entered the stationary phase of growth (OD600=0.8).  Conversely, AgaB was 

barely detected in the supernatant during the early exponential growth (OD600=0.2) when  
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Figure 4.2 

 

Immunoblot detection to determine the specificity of anti-rAgaB (α-AgaB) and anti-

rAgaE (α-AgaE) 

 

Antibodies were raised against purified rAgaE-His or rAgaB-His.  The resulting anti-sera 

were used to probe cell lysates of S. degradans or purified recombinant protein.  Samples 

were fractionated on an 8% SDS-PAGE gel, blotted onto nitrocellulose and probed with 

either anti-His (α-His 1/1000), α-AgaB (1/1000 dilution), preimmune sera (1/1000 

dilution), α-AgaE (1/100 dilution) or preimmune sera (1/100 dilution).  Molecular weight 

standards are marked to the left or right of the gels.  Lanes 1.  rAgaE-His purified from E. 

coli and probed with α-AgaE; 2. An S. degradans cell lysate probed with α-AgaE the 

expected 146kDa protein is detected.  3. An S. degradans cell lysate probed with 

preimmune sera. 4. rAgaB-His purified from E. coli and probed with α-His; 5. An S. 

degradans cell lysate probed with α-AgaB; both expected derivatives of AgaB were 

detected. Later analysis demonstrated that the 65 and 85 kDa forms of AgaB can be 

immunoprecipitated from culture supernatants using α-AgaB (see Appendix II). 6. An S. 

degradans cell lysate probed with preimmune sera. 
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its concentration continued to increase until the culture reached stationary phase 

(OD600=0.8). As stationary phase progressed, concentrations of AgaB in the supernatant 

declined.  It was concluded that AgaB was steadily secreted during exponential growth, 

with concentrations accumulating in the supernatant. Thereafter, secreted protease 

activity (M. Howard, unpublished data) may reduce its concentration. 

 

The expression pattern of AgaE was different (Figure 4.3).  AgaE was detected in cell 

lysates at an OD600= 0.2. However, unlike the case for AgaB, the concentration of AgaE 

in the cell lysates increased until the culture entered early stationary phase, suggesting 

that either the induction of AgaB and AgaE were independent of each other or AgaE 

remained cell associated. Since AgaE acts on polymers too large to enter the outer 

membrane, these considerations hinted that AgaE is exocellular during logarithmic 

growth and is thought to be membrane bound. As the culture progressed into stationary 

phase, however, the amount of cell-associated AgaE decreased as the concentration in 

culture supernatants increased.  It is noted that the increasing amounts of AgaE observed 

in culture supernatants of stationary phase cultures could be due to autolysis and not only 

secretion. 

 

AgaB and AgaE were not detected in glucose-grown cultures until the later phases of 

growth, (e.g. stationary phase), in cell lysates (Figure 4.4). This result suggested that an 

exponentially growing culture using glucose as a sole carbon source could be used as a 

negative control in immuno-localization experiments. 
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Figure 4.3 

 

Immunoblot detection to determine the abundance of AgaE and AgaB in cell lysates 

and supernatants of S. degradans during growth with agarose as the sole carbon 

source 

 

Cells were harvested from cultures monitored by absorbance as OD600. Samples were 

standardized to protein amounts. Two µg of each protein was fractionated on an 8% SDS-

PAGE gel and probed with either α-AgaB or α-AgaE.  The signal intensity of the cross 

reactive bands was quantified by the NIH ImageJ software package and plotted as 

relative abundance (primary y-axis) versus time (x-axis) and OD600 (secondary y-axis) for 

both AgaE (Top) or AgaB (Bottom) Legend, Diamonds, average culture OD600 for two 

independent cultures; circles, culture supernatants; triangles, cell lysates.  The 

corresponding Western Blots for both cell lysates and supernatants are shown below each 

chart.  The blots correspond to the following time points in hours (left to right): 20.5, 25, 

27, 28.5, 30.5, 33, 46.5.
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Figure 4.4 

 

Immunoblot of AgaE and AgaB present in cell lysates of S. degradans during growth 

with glucose as the sole carbon source 

 

Cells were harvested from cultures and equal protein amounts (2µg) were fractionated on 

an 8% SDS-PAGE gel then probed with either α-AgaB or α-AgaE.  The time post 

inoculation is shown above in hours: Top panel, cells probed with α-AgaE; Bottom panel, 

cells probed with α-AgaB.  Only cells from stationary state cultures (22 hours post 

inoculation) cross-reacted with either anti-sera. 
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Immuno-epifluorescence indicates AgaE is cell associated 

 
Logarithmically growing cells in agarose fluoresced brightly in the presence of α-AgaE 

and FITC conjugated secondary antibody (Figure 4.5). Alternatively, cells, grown in 

glucose, fluoresced only slightly and controls using FITC conjugated secondary antibody 

only or pre-immune serum plus secondary antibody did not fluoresce at all (Figure 4.5). 

When the cells in phase contrast micrographs were compared with those in identical 

superimposed epifluorescence micrographs it was determined that 34% fluoresced (+/- 

8%; N=400).  Among cells grown in glucose, only 2% fluoresced (+/- 1.5%; N=400).  

Supporting the previous biochemical data, agarose grown cells, exposed to α-AgaB and 

FITC conjugated secondary antibody also did not fluoresce suggesting that AgaE is 

exocellular while AgaB is not. 

 

Cellular localization of AgaE and AgaB by immunogold electron microscopy  

 
Logarithmically growing cells in agarose were probed with α-AgaE or α-AgaB along 

with immunogold-conjugated secondary antibody. The following negative controls were 

not labeled: AgaE deletion mutant strain S. degradans ∆agaE::kan, wild type S. 

degradans probed with secondary antibody only, and wild type S. degradans probed with 

preimmune sera and secondary antibody. Cultures grown with glucose as the sole carbon 

source were labeled, but at a much lower frequency.  The density and distribution of gold  
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Figure 4.5 

 

Immuno epi-fluorescence detection of AgaE on S. degradans grown with agarose or 

glucose as the sole carbon source 

 

Cells harvested from mid-logarithmic (OD600=0.3) cultures of S. degradans were heat 

fixed to glass slides and probed with α-AgaE and a corresponding FITC-labeled 

secondary antibody.  Both fluorescence and phase contrast image are shown. 

Magnifications for all images are 4000x. The exposure time for each image is noted.  

Panels top, S. degradans grown with agarose; middle, S. degradans grown with glucose; 

Bottom S. degradans grown with agarose and probed with preimmune sera in place of α-

AgaE. A single fluorescing cell is shown as an insert in the bottom left corner of the top 

right panel. 
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labeling were tabulated (Table 4.2), showing that agarose-grown cells were labeled at a 

higher frequency and density than glucose-grown cells. 

 

The fine-structure immunoprobing suggested AgaE was exocellular and arrayed on the 

cell surface differently depending on the phase of growth. Among cells grown with 

agarose as a sole carbon source, gold labeling patterns appeared to correspond to four 

distinct stages. The first was a linear arrangement of gold along the outer-membrane of 

cells with typical gram negative morphology (Figure 4.6a). The outer membrane adjacent 

to these particles appeared intact.  In the second stage, gold labeled cell surface material 

was present. The regions were discreet areas of lightly contrasted material that did not 

appear to be surrounded by an outer-membrane (Figure 4.6b). They typically contained 

multiple gold particles labeled on with the inclusion of AgaE. In the third stage, this 

material was released from the cell and, again, was positively probed with anti-AgaE 

within the lightly contrasted cell material (Figure 4.6c). This correlates with the 

biochemical evidence of the shift of AgaE from the cell fraction to the supernatant 

fraction during the later growth phases. Gold labeled anomalous cell surface structures 

were also observed.  These included a large surface bleb that was surrounded by inner 

and outer membranes. The embedded gold particles were observed attached to its outer- 

membrane (Figure 4.7d).   

 

Cultures grown with glucose as a sole carbon source had reduced levels of labeling at 

slightly above that observed for the control samples (Table 4.2). The labeling in these 

samples appeared restricted to cell surface arrangements with epicellular structures not 
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observed.   Furthermore, the lightly contrasted cell surface material observed on cells 

grown with agarose as a sole carbon source were not apparent in these samples. 

 

Immunogold electron microscopy of thin sections shows exocellular arrangements of 

AgaE  

 

Using α-AgaE, positively probed ultra-thin sections of S. degradans, grown with agarose 

as the sole carbon source were observed. Gold particles were observed embedded within 

the membrane (Figure 4.7a) and on the cell surface in areas suggestive of cell surface 

structures (Figure 4.7b).  Also, as in the whole cell samples, gold labeled exocellular 

aggregates, attached to lightly contrasted material were also apparent (Figure 4.7c).  

 

These results were different from those observed in cultures grown with glucose as a sole 

carbon source. These samples were rarely labeled and, then, limited to a linear cell 

surface arrangement (Figure 4.7d).  Negative controls including S. degradans treated with 

secondary antibody only or S. degradans treated with preimmune and secondary antibody 

were not labeled. 

 

Taken together, these observations suggest that AgaE is initially embedded in the outer- 

membrane and then later released in aggregates. These results were consistent with those 

from whole cell mounts and correlated with three patterns of cell associated AgaE: a] in a 

linear arrangement, b] bound to cell surface material, and c] secreted in aggregates. 
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Table 4.2 
 
 
Frequency and density of labeling observed in immuno-electron microscopy experiments 
 
 

Strain / medium Probe %  Labeled Cells Mean Gold Particles 
per cell 

    
S. degradans wild type / 

agarose 
α-AgaE 85%  (p>95%) 10 +/- 3  

 α-AgaB 40% 2.3 +/-1.2 
 Preimmune sera 50% 3.1+/-3 
 Secondary Antibody Only 2% 0.17 +/- 4 
    

          S. degradans wild type/  
glucose 

α-AgaE 64% 4+/-2 

 α-AgaB 45% 2.4 +/- 1.5 
    

   S. degradans ∆agaE::kan/ 
glucose and agarose 

α-AgaE 47% 2.8+/-1.2 

 Preimmune sera 10% 2+/-1 
 Secondary Antibody Only 2% 1 +/-1 

% labeled cells = 100 randomly chosen cells containing at least 1 gold particle contacting the cell surface at a magnification of 
16,000x.  Mean gold particles per cell = number of gold particles/ labeled cells. Error calculated for mean gold particles per 
cell indicate a range of particles observed per cell.  Note: Only S. degradans grown with agarose as a sole carbon source 
contained numerous clusters containing greater than 5 particles. P value represent a confidence interval (p-value) based upon 
the labeling of wild type S. degradans and the S. degradans agaE deletion mutant with α-AgaE.  The equation was derived 
from Brown and Hollander 1977 (27). 
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 Figure 4.6  

 

Detection of AgaE on the cell surface of S. degradans  

 

Cells harvested from cultures growing exponentially were fixed, adsorbed to nickel grids, 

probed with α-AgaE (1/10 dilution) and a corresponding 10nm gold conjugated 

secondary antibody.  The preparations were contrasted with uranyl acetate and viewed by 

TEM as described in the Materials and Methods.  Panels A, S. degradans cell showing 

linear pattern of AgaE on its cell surface (94,500 x; scale bar=1µm); B,  S. degradans cell 

with a AgaE containing cell surface protuberance (94,500 x, scale bar= 1µm); C. S. 

degradans cells showing multiple stages of AgaE including attached o the cell surface or 

freely secreted in aggregates (94,500 x scale=1µm); D, S. degradans cell with anomalous 

cell surface structure containing AgaE on its surface. The structure is surrounded by an 

outer membrane.  Structure is labeled.  (94,500 x, scale bar = 1µm);  E, S. degradans 

∆agaE::kan probed with α-AgaE (31,500 x, scale bar = 1µm); F, S. degradans probed 

with preimmune sera in place of α-AgaE (31,500 x, scale bar 1µm). Arrows correspond 

to text.
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Figure 4.7 

 

Detection of AgaE by immunogold transmission electron microscopy in ultra thin 

sections of S. degradans grown with either agarose or glucose as the sole carbon 

source 

 

Cells were fixed, dehydrated and embedded in an EPON 812 resin.  Ultra thin sections 

were taken with a glass knife, collected on nickel grids and probed with α-AgaE and a 

corresponding gold conjugated secondary antibody. Sections were contrasted described in 

the Materials and Methods.  Panels: A, S. degradans grown with agarose showing AgaE 

embedded in its outer membrane and perhaps periplasm (240,000 x, scale bar 0.1µm); B, 

S. degradans grown with agarose showing AgaE on or surrounding the outer-membrane 

(120,000x, 0.1µm); C, S. degradans grown in agarose demonstration the detachment of 

AgaE from the cell surface in the form of aggregates within lightly contrasted material 

(120,000x, 0.1µm); D, S. degradans grown with glucose showing a linear arrangement of 

AgaE gold on its outer membrane 150,000x, µm. 

 



 

 125 
 

4.7A

4.7B

 



 

 126 
 

4.7C

4.7D



 

 127 
 

Similar experiments with AgaB including FITC detection and immunogold probing 

indicated that it was not cell surface associated and, most likely, freely secreted during 

growth with agarose as a sole carbon source. 

Discussion  

 

The degradation of complex polysaccharides (CPs) is a critical function in the carbon 

cycle that returns recalcitrant carbon to a soluble state. In terrestrial environments a large 

portion of this material is degraded by characterized microorganisms that array hydrolytic 

proteins upon their cell surface (19).  The organisms that degrade CPs in marine 

environments are much less well known. Recently, multiple studies into the decay system 

of Spartina alterniflora have uncovered large communities of both fungi and bacteria that 

degrade the plentiful supply of available CPs (100).  Although these organisms have been 

characterized pylogenetically, the means by which they degrade CPs remain unknown.  

One organism, S. degradans, isolated from such an environment, can degrade multiple 

CPs including agar, through the use of some cell associated hydrolytic enzymes. 

 

Cell surface associated agarases have been alluded to in several organisms, including 

Cytophaga sp. (44, 46), Cytophaga flevensis (136), Zobellia galactanivorans (6, 76)and 

Pseudoalteromonas atlantica (101, 103).  The β-agarase I from P. atlantica was a freely 

secreted protein (101, 103) while its β-agarase II was purified from cellular lysates (59).  

However, while these reports suggest the localization of these agarases, little firm data 

was presented and the mechanisms of exocellular attachment remain unknown. 
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Two membrane associated agarases were detected and identified as active regions in 

agarose zymograms of cellular fractions of S. degradans, an expected 85kDa protein 

thought to be the predicted lipoprotein AgaC and a 146kDa agarase, genomically 

predicted to be AgaE.  Unlike AgaB, the amounts of cell-associated AgaE increased 

during logarithmic growth followed by an increase in freely secreted AgaE as the cultures 

entered stationary phase.  This apparent shift suggests the release of AgaE from a 

predominantly cell associated form to a freely secreted state.   

 

Using immuno-epi fluorescence and immuno-gold electron microscopy, AgaE was 

observed on the cell surface of S. degradans during logarithmic growth.  Several 

hypotheses could be tested to explain this association.  First, AgaE could be bound to 

agarose appearing as lightly stained aggregates. This association could occur via the 

CBM6 modules of AgaE binding cell surface or extracellular agarose.  If this were the 

case, however, AgaB should bind since it also contains CBM6 that bind agarose (H. 

Gilbert, personal communication). Notably, surface associated AgaB was not detected by 

epifluorescence or immunogold labeling.  This hypothesis could be more rigorously 

tested by repeating the epifluorescence and immunogold labeling with an E. coli host 

expressing AgaE-His grown in the presence of agarose.  If AgaE-His is observed on the 

cell surface of E. coli then this would suggest that AgaE does bind agarose at a detectable 

level which could explain the interaction observed with S. degradans and α-AgaE. 

 

A second hypothesis is that the α-AgaE antibodies randomly associate with a cell surface 

substance such as extracellular polysaccharide (EPS) or another cell constituent and that 
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this interaction could be amplified in the immunogold labeling experiment due to the 

high titer of antisera used.  However, this hypothesis is refuted by data showing the S. 

degradans deletion mutant is not labeled with α-AgaE antisera. This supports the 

observation that α-AgaE is bound to the cell surface of S. degradans.   

 

Multiple lines of evidence suggest that AgaE is specifically bound to the cell surface of S. 

degradans.  The mechanism, indeed, of the selective and discreet labeling by anti-AgaE 

of wild type S. degradans grown in agarose, but not glucose is not known.  From its 

domain analysis we know that AgaE contains a GH86 and three CBM6 modules, a 

slightly hydrophobic amino terminal domain and four Tsp-3 repeats.  The hydrophobic 

amino terminus is composed of 15 residues that overlap a type two secretion signal.  

Secretion signal sequences can be confused for single pass transmembrane domains by 

some prediction software and so it remains likely that this region is solely responsible for 

secretion and the short hydrophobic region is cleaved upon export to the periplasm.   

 

Tsp-3 repeats are present in a variety of prokaryotic cell surface proteins.  A survey of the 

PFAM database revealed a total of 179 total proteins that contain Tsp-3 repeats, with 117 

of them being prokaryotic. Of these, 103 contain outer membrane protein A (OmpA) 

domains. The Tsp-3 repeats occur between the predicted functional modules in proteins. 

Aside from the Omp proteins, there are five hydrolytic proteins including four cellulases 

and one α-agarase that contain Tsp-3 repeats. The PFAM database lists many of the Tsp-

3 containing proteins as calcium binding or adhesin proteins.  This survey suggests that 

these repeats are typically found on cell surface proteins. In S. degradans, two enzymes 
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have been genomically identified that contain Tsp-3 repeats, AgaE and a laminarinase 

(Lam 16A).  Lam16A  has four Tsp-3 repeats between the GH domains and CBM 

modules. These repeats could mediate a cell surface interaction perhaps in a similar 

fashion as that described for cellulosomes.   

 

Cellulosomes are high molecular weight cell surface protuberances capable of 

hydrolyzing complex polysaccharides including cellulose, pectin, and xylan (43).  These 

structures are produced by a number of species of cellulose degrading Clostridia and 

fungi (21).  Cellulosomes array carbohydrases upon cell surfaces via a well characterized 

protein-protein interaction.  Each cellulosome can range from 1-3 mDa and contain 

multiple non-catalytic high molecular weight scaffold proteins termed scaffoldins (21).  

Multiple enzymes attach to the scaffoldin which also usually has a cellulose binding 

domain. The cellulosome is anchored to the cell envelope where it interfaces the 

environment (18, 19).  The interaction between hydrolytic enzymes and scaffoldin 

proteins are well understood.  Scaffoldin proteins contain cohesion domains (cohesins) 

that bind to repetitive docking sequences (dockerins) within hydrolytic enzymes in a 

calcium dependent manner(17).  

 

Interestingly, Tsp-3 repeats first identified in the adhesive glycoprotein, thrombospondin, 

also complex calcium ions (87). Furthermore, they share structural and, perhaps, 

functional characteristics with dockerin domains.  Both Tsp-3 and dockerin repetitive 

sequences are aspartic acid rich regions containing the motif, DXDXDX(X4-5)DX, where 

the second aspartic acid residue may be absent in dockerin domains.  Both domains bind 
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calcium and mediate adhesion to other proteins. Furthermore, both domains are found in 

hydrolytic proteins. As in the case of dockerin-scaffoldin interactions, a pair of Tsp-3 

repeats on one protein could bind a pair of Tsp-3 repeats on another protein.  

 

If the Tsp-3 repeats of AgaE function in protein-protein interactions then the cognate 

interactive protein may be present on the S. degradans surface, either anchored to the 

outer membrane or envelope (possibly S layer protein).  This interactive protein could be 

a scaffoldin analog.  In fact, 18 candidate scaffoldin/surface attachment proteins encoded 

by S. degradans exist, identified based on their very high molecular weights, low pI’s, 

secretion signal and modules that annotate as protein/protein interaction mediators (L. 

Taylor, unpublished data). For example CabA has a molecular weight of 1,568kDa, 

14,609 amino acids, 35 Tsp-3 modules, seven E-F hand-like modules, a calculated pI of 

4.18 and a secretion signal. A 692 residue fragment from CabA annotates most closely 

(e=10-19) to the C. thermocellum scaffoldin protein (R. Weiner, unpublished data). 

Therefore, it is distinctly possible that CabA is an S-layer protein, binding AgaE in a 

calcium dependent manner similar to the assembly of cellulosomes in the cellulolytic 

Clostridia such a model is shown in figure 4.8. 

 

At least four enzymes, AgaA, AgaB, AgaC and AgaE, synthesized by S. degradans are 

active against neoagaro-oligosaccharides. A model of the enzymology and spatial 

arrangement of these enzymes is presented.  Polymeric agarose would be degraded by 

AgaB, a freely secreted β-agarase I, producing neoagarotetraose as the major product.  

Another β-agarase, AgaC, anchored to the cell surface by a lipobox would be 
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depolymerizing agarose.  In this way S. degradans can degrade both proximal and distant 

agarose.  AgaE, a cell surface attached β-agarase II, would further hydrolyze the 

neoagarotetraose product of AgaB and AgaC.  The CBM6 of AgaE would bind to soluble 

neoagaro-oligosaccharides and retain them on the cell surface.  The degradation of these 

substrates would create a high local concentration of neoagarobiose in close proximity to 

the cell surface. Cells entering stationary phase of growth appear to release AgaE into the 

exocellular environment.  This may be a response to decreased concentrations of 

available carbon and may represent an attempt to detect and utilize agar that is not in 

close proximity to the cells.  Neoagarobiose would then be imported into the periplasm 

where it would be degraded by AgaA to D-galactose and 3,6 anhydro-L-galactose.  D-

galactose would be imported into the cytoplasm and metabolized via glycolysis.  The 

metabolic fate of the L-galactose derivative has not been determined.   
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Figure 4.8 

 

Model of cell surface attachment by AgaE 

 

 Top alignment of Tsp-3 repeats from AgaE compared to selected dockerin domains from 

various organisms. Note that both contain similar aspartic acid repeats; Below, diagram 

of AgaE attachment to the cell surface of S. degradans. The Tsp-3 repeats are located 

between both the catalytic GH86 domains and the carbohydrate binding domains, CBM6.  

Binding at the Tsp-3 repeats would allow the functional domains to be arrayed on the cell 

surface.  Binding is shown to an unknown protein, perhaps a putative scaffold protein, 

which contains numerous Tsp-3 repeats.  This interaction is hypothesized to be calcium 

dependent analogous to the cohesin-dockerin interaction observed in cellulosomes. 
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Tsp-1 DGDNDGVPDTSDNC 
Tsp-2 DTDEDGINDKIDQC 
Tsp-3 DGVLNGADQCGNTP 
Tsp-4 DADNDGVANSEDTC 
 
EngE  DVDGNDVVNSLDFE 
G.vi  DVDGNGVVDSLDIT 
G.vi  DIDGDGRVGAGDIQ 
ManA  DVDANGKVNAIDLA 
ManK  DVDNDTLISAIDLA 
AgaA  DVDGDQQITALDFS 
ScaA  DVDNDGNVDSDDYA 
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Chapter 5: Future Directions and Proposed Experiments 

 

Background  

 

The agarase system of Saccharophagus degradans illustrates what is hypothesized to be a 

common thread in the degradation of complex polysaccharides (CPs) by this, and 

perhaps, related organisms.  This system is comprised of multiple apparently redundant 

enzymes some of which appear to be surface localized. In particular, this work describes 

five enzymes involved in agar degradation and the cell surface localization of a β-agarase 

II, AgaE.    The interaction between AgaE and the cell surface of S. degradans deserves 

further study as it appears to occur by a heretofore unknown mechanism that may also 

occur with other hydrolytic enzymes produced by S. degradans.  This chapter proposes 

additional experiments to examine further the interaction of AgaE with the cell surface of 

S. degradans.   

 

As stated previously the degradation of CPs is a crucial function in the biome converting 

recalcitrant carbon to soluble sugars.  In terrestrial habitats CP degradation is largely 

mediated by characterized bacteria and fungi; however, the marine microorganisms, 

which degrade CPs are largely unknown. Chapter Two describes a related group of 

gamma proteobacteria, defined by conserved 16s rDNA sequences that, surprisingly, 

share the ability to degrade CPs. These organisms are currently classified as belonging to 

the Saccharophagus, Microbulbifer or Teredinibacter genera (49).  The data from this 
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chapter suggest that there may be sufficient selective pressure for these bacteria to 

maintain similar hydrolytic proteins.  In fact, preliminary data suggested that at least 

some of the chitinases produced by S. degradans have homologs produced by 

Microbulbifer hydrolyticus (M.Howard, unpublished data).  Although further study into 

the relatedness of these enzymes is needed, it is possible that distinct hydrolytic protein 

lineages may also correspond to 16s rDNA lineages.  

 

Five proteins involved in the degradation of agar by S. degradans were identified: AgaA, 

AgaB, AgaC, AgaD and AgaE.  These proteins contain three distinct glycoside hydrolase 

(GH) domains, including GH16, GH50 and GH86.  S. degradans is the only known 

organism that encodes these three catalytic domains.  Unusual for agarases, AgaB and 

AgaE contain multiple type-six carbohydrate binding modules (CBM6). Further analyses, 

by collaborators Dr. Harry Gilbert and Dr. Alisdair Boraston, have determined that the 

CBM6 of AgaB bind neoagaro-oligosaccharides.  When published, this will be first 

report of agar-binding domains.   

 

The hydrolytic capabilities of the agarases produced by S. degradans were determined 

using multiple techniques.  Two agarases, AgaB and AgaE, were expressed and purified 

from E. coli. These proteins were found to be active against polymeric agarose yielding 

soluble neoagaro-oligosaccharides.  AgaB is a β-agarase I producing predominantly 

neoagarotetraose while AgaE is a β-agarase II producing solely neoagarobiose.  

Difficulties in the purification of other agarases led to the development of alternative 

methods for their characterization. For example, AgaC was identified in an agarase active 
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protein band by mass spectrometry.  This analysis was performed by excising agarase 

active protein bands from an SDS-PAGE gel suggesting that AgaC is a β-agarase.  

Furthermore, using a newly described method, site specific null mutations were created in 

S. degradans.  Equally as important, this demonstrated for the first time the ability of S. 

degradans to import linear DNA and the capability to create site specific null mutations 

in this organism. 

 

The identification of two membrane associated agarases, AgaC and AgaE, suggested both 

proteins contained domains or sequence motifs to mediate this interaction.  In fact, one of 

these proteins AgaC was a predicted surface associated lipoprotein; however, AgaE did 

not contain a domain suggestive of outer-membrane attachment. Using an AgaE specific 

antiserum both epifluorescence microcopy and immuno-gold transmission electron 

microscopy suggested the cell surface association of AgaE.  In some samples it was 

attached to the cell surface by what appeared to be lightly stained material.  This material 

was also detached from the cell surface appearing as aggregates with AgaE embedded 

within it. 

 

It is hypothesized that the four Tsp-3 repeats of AgaE mediate the cell surface attachment 

of this protein.  These domains, identified in human thrombospondin, are aspartic acid 

rich predicted calcium-binding sequences that mediate protein-protein interactions (87). 

The hypothesis that Tsp-3 repeats mediate the cell surface attachment of AgaE suggests a 

structural similarity to the cellulosomes produced by many terrestrial microorganisms.  

Cellulosomes are characterized as protein complexes that array hydrolytic proteins upon 
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the cell surface of some gram-positive bacteria and fungi(19).  These protein arrays are 

characterized by calcium dependent interactions between docking (dockerin) repeats 

found on hydrolytic proteins and cohesion (cohesin) domains found on large cell surface 

scaffold proteins (scaffoldins) (19). This assembly allows for a CP-enzyme-cell 

interaction producing soluble sugars in close proximity to the cell and reducing excessive 

diffusion of product or enzyme.  An analogous system has not been identified in marine 

bacteria while the challenges of CP degradation in these environments remain. This 

chapter proposes future directions and experiments to determine if the interaction of 

AgaE is structurally similar to that observed in cellulosomes. 

 

Proposed Research 

 

a. The central question: Do Tsp-3 repeats mediate cell surface protein binding? 

Cell surface display of AgaE appears to utilize a previously uncharacterized 

mechanism.  The proposed function of the Tsp-3 repeats of AgaE is to mediate a 

calcium dependent anchoring interaction with a putative scaffoldin protein. If this 

is the case then other hydrolytic proteins that contain Tsp-3 repeats should also be 

found on the cell surface of S. degradans.  

 

b.  A functional model of the interaction of Tsp-3 domains from hydrolytic 

proteins and candidate scaffoldin proteins.  The previous chapter proposed a 

model of AgaE interaction similar to the assembly of cellulosomes. The following 
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experiments attempt to identify and preliminarily characterize the scaffoldin 

analogs encoded by S. degradans.  

Hypothesis 1:  

 

H1: Tsp-3 domains are specific sequences that mediate cell surface binding.  

H1a: Tsp-3 domains are random sequences that do not have a function. 

 

This question can be approached by analyzing another hydrolytic protein produced by S. 

degradans that contains Tsp-3 repeats, termed Lam16A. This protein is a laminarinase 

identified in the genomic sequence annotation (L. Taylor personal communication).  

Antibodies specific for this enzyme can be used for immunolocalization experiments 

similar to those performed in the previous chapter with AgaE and anti-AgaE (α-AgaE).  

Anti-sera specific for Lam16A (α-Lam) can be generated in either goat or mouse hosts.  

S. degradans grown with laminarin as a sole carbon source can be probed with α-Lam 

and observed by either immuno-fluorescence and/or immunogold electron microscopy.  

Cell surface localization of Lam16A would strongly suggest the interaction of Tsp-3 

domains with the outer-membrane of S. degradans. 

 

This interaction can be analyzed further by culturing S. degradans in the presence of both 

agarose and laminarin.  Cells prepared from these cultures could be probed with α-AgaE 

and α-Lam and observed for co-localization of the antisera.  It is anticipated that the 

localization of Lam16A and AgaE occurs on the cell surface perhaps at similar cell 
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surface structures.  This result would suggest the production of a cell surface anchoring 

protein that mediates the binding of multiple proteins in a scaffoldin analogous 

mechanism.   

 

If  α-Lam does not localize to the cell surface of S. degradans it suggests that Tsp-3 

repeats do not mediate cell surface attachment of hydrolytic proteins.   This result would 

warrant further analysis of other modules within AgaE that could mediate cell surface 

attachment, in particular, the CBM6.  AgaE could be, however unusual, bound to a cell 

surface polysaccharide by the CBM6.  This interaction could be tested using specific 

deletions of AgaE constructed with the mutagenic technique described in Chapter 3 

(Figure 5.1) Recombinants could be selected for by antibiotic resistance and screened in 

immunoblots with α-AgaE.  Detection of a smaller molecular weight derivative of AgaE 

would indicate the proper construct. 

 

Using a similar mutagenic technique described above the Tsp-3 repeats of AgaE could be 

selectively deleted.  Immunolocalization experiments using α-AgaE could be performed.  

If AgaE derivatives are not observed on the cell surface of S. degradans it would suggest 

that the Tsp-3 repeats of AgaE are involved in cell surface localization of this protein.      
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Figure 5.1 

 

Proposed means to selectively delete the CBM6 of AgaE 

 

 The proposed primers, X1, X2, X3, X4 are shown (arrows).  The coding sequence of 

AgaE is shown (strain line) with an overlapping model of the encoded modules.  Key, 

solid box, secretion signal; triangles, CBM6; striped box, GH86 domain; vertical lines, 

Tsp-3 repeats. By using a method similar to that performed in Chapter 2, site specific 

deletions may be constructed.  Primers X1 and X2 would amplify a 1kb fragment 

upstream of agaE.  Primer X2 would contain a sequence tail complementary to the 5’ 

region of a kanamycin resistance cassette described below.  Primers X3 and X4 would 

amplify a 1kb fragment, which includes the GH86 domain of AgaE.  Primer X3 would 

contain a sequence tail complementary to the 3’ region of the kanamycin resistance 

cassette. The X3 sequence complementary to agaE would begin directly after the CBM6.  

This construct can be transformed into S. degradans as previously described (Chapter 3).  

 

This approach would require the use of a kanR cassette (below) containing a stop codon 

(TAA) followed by a start codon (ATG) and a secretion signal (black box).  The secretion 

signal sequence can be derived from agaE. This cassette could be constructed using 

standard cloning procedures.  The resulting product could be used to make in frame 

fusions resulting in a truncated secreted proteins.   
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 Immunolocalization experiments could be repeated for the presence of the truncated 

derivative of AgaE.  This technique could determine the role of other unforeseen 

interactions between AgaE and the cell surface of S. degradans. 

 

Hypothesis 2  

 
H2:  AgaE utilizes Tsp-3 domains to attach to a cell surface bound protein. 

H2a: AgaE utilizes Tsp-3 domains to attach directly to the outer-membrane of S. 

degradans. 

 

Candidate scaffoldin proteins encoded by S. degradans have been identified.  These 

proteins are characterized by their high molecular mass, in excess of 1.5mDa, and the 

presence of multiple Tsp-3 repeats (L. Taylor personal communication).  Unfortunately, 

the large size of these protein precludes them from traditional methods of detection and 

analysis i.e. SDS-PAGE, immunoblot analysis, expression and purification from E. coli.  

In fact, previous attempts to identify AgaE-His interacting proteins may have been 

hindered by this fact (Figure 5.2).  The presumed scaffoldin function of these proteins can 

be determined, however, in a relatively straightforward manner by creating null 

mutations of the encoding genes.   
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Figure 5.2 

 

Far-Western immunoblot detection of AgaE binding proteins in cell lysates of S. 

degradans 

 

Cell lysates of either glucose grown or agarose grown S. degradans were fractionated on 

an 8% SDS-PAGE gel.  The Far-Western blot was performed by standard methods (118).  

Briefly, the gel was blotted onto nitrocellulose and the proteins refolded.  The blot was 

probed with AgaE-His overnight at 4°C, washed, probed with Hrp conjugated anti-His, 

incubated with chemiluminescent substrate and exposed to film.  Lanes 1, glucose cells; 2 

&3, agarose cells.  This blot solely detected a protein of similar molecular weight to 

AgaE-His (146kDa) and may indicate that AgaE-His is bound to AgaE.  Large proteins 

such as the putative scaffoldins would be excluded from this analysis because of their 

inability to enter the polyacrylamide gel. 
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Due to the extreme size of the putative scaffoldin encoding genes, it is unlikely that the 

entire coding sequence could be removed.  Mutagenic constructs could contain the 5’ 

promoter region and the start codon of each gene and an antibiotic resistance cassette 

flanked by 1000 nucleotides of homologous sequence.  The resulting recombinants can 

be probed with either α-AgaE or α-Lam to observe whether cell surface localization of 

either protein occurs.  If so, sequential mutations of the other putative scaffoldin proteins 

can be performed using various antibiotic resistance cassettes.  In this manner the 

function of these large proteins can be inferred by specific null mutations.   

 

An interaction of AgaE or Lam16A with a scaffoldin protein can be tested using 

truncated derivatives of the scaffoldin proteins expressed and purified from E. coli.  

Scaffoldin proteins can be affinity purified using a specific epitope tag, i.e. GST tag.   

Upon purification these fragments could be used in various protein affinity column 

chromatography experiments.  Specific elution of either AgaE-His or Lam16A-His from 

a column containing immobilized scaffoldin-GST would indicate an interaction between 

these proteins.  Controls for these experiments could include the following: 1. non-Tsp-3 

containing hydrolytic proteins in place of AgaE-His or Lam-His 2. a Tsp-3 deletion of 

AgaE or Lam constructed and purified from E. coli  3. a region of the scaffoldin protein 

that does not contain Tsp-3 repeats.  Bound proteins from these columns could be eluted 

using various conditions including increased pH, SDS or, perhaps, EGTA.   The eluted 

proteins can be analyzed in immunoblots using either anti-His or anti-GST.  If such an 

interaction is detected, the use of EGTA can be used to determine if it occurs in a calcium 

dependent manner such as the cohesin and dockerin interactions of cellulosomes.  The 
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interaction of these proteins can be assessed in buffers not containing calcium or in 

buffers containing calcium and increasing concentrations of EGTA.  

 

If the localization of AgaE or Lam16A is not affected by the deletion of the putative 

scaffoldin proteins it would suggest that the proteins are directly anchored to the cell 

surface.  This could be due to an unidentified hydrophobic interaction between AgaE and 

cell surface lipids.  This model could be tested by constructing spheroplasts of E. coli and 

incubating them in the presence of AgaE.  The resulting spheroplasts could be collected 

onto nickel grids and immuno probed with α-AgaE and a gold conjugated secondary 

antibody and observed by TEM. The immunolocalizaton of α-AgaE to spheroplasts of E. 

coli would indicate that the interaction of AgaE to the cell surface of S. degradans either 

occurs non-specifically or by a conserved cell surface protein.    

 

Conclusions 

 

The study of the interaction of AgaE with the cell surface of S. degradans has various 

significant implications.  First and foremost, a specific AgaE-scaffoldin interaction would 

demonstrate a novel means by which gram-negative bacteria display cell surface proteins.  

If Tsp-3 repeats mediate this interaction then they represent short amino acid sequences 

that could be used for microbial cell surface protein display. Libraries of these surface 

proteins could be constructed and used analogously to phage display protein libraries.  

These microbial display libraries could be used to identify novel proteins; for example, a 
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library of cell surface displayed hydrolytic proteins could be probed with fluorescently 

labeled saccharides (68) and screened for their ability to bind such a target.  

 

Furthermore, if similarities between the cell surface attachment of AgaE and 

cellulosomes are found it would imply convergent evolution directed possibly from the 

challenges of CP degradation.  It is surprising that some terrestrial bacteria and fungi 

produce functionally and structurally similar cellulosome complexes, the characteristics 

of each varying only slightly.  A functionally analogous system may be produced by 

other organisms, such as S. degradans.  The need for such a strategy may be selected for 

by the challenges of CP degradation most notably the advantage of retaining substrate, 

enzyme and released products in close proximity to the cell. 
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Appendices 
 

Appendix I 

 

Phenotypic Instability of E. coli EPI300 (pNE10) 

 

Phenotypic variation was observed in clones of E. coli EPI300 (pNE10) resulted in a 

mixed population of pitting (agarase positive) and non-pitting (agarase negative) clones.  

Colonies of E. coli EPI300 (pNE10) appeared to become agarase negative after growth in 

broth cultures.  This was observed by inoculating a broth culture with an agarase positive 

clone and observing the frequency of agarase negative colonies upon plating.  Of the 179 

colonies screened, three were agarase negative (1.7%).  All agarase positive colonies 

were half the diameter (1mm) of agarase negative clones (2-3mm).  This experiment was 

repeated using a single agarase positive or agarase negative colony.  From the agarase 

positive culture 587 colonies were screened 146 of which were agarase negative (25%).  

987 colonies from the agarase negative culture were screened all of which remained 

agarase negative.  The phenotype was confirmed by flooding the plates with iodine 

solution. The agarase positive colonies were surrounded by large unstained halos 

indicating depolymerized agar while agarase negative colonies were not surrounded by 

halos.  Once the sequences of agaA and agaB were available the agarase positive and 
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agarase negative clones were tested for their presence. Cellular lysates of these clones 

were analyzed by agarose zymography (Figure AI.1).   

 

The presence of agaA and agaB in both agarase positive and agarase negative colonies 

was determined by PCR using primers specific for each full-length gene (Figure AI.2).  

Agarase positive colonies yielded PCR products indicative of their presence while 

selected agarase negative clones did not.  Agarase positive clones revealed three agarase 

positive proteins while the agarase negative clones were entirely agarase negative.  

Plasmid preparations from agarase positive and negative clones indicated that both 

populations contained fosmid DNA (Figure AI.2).  These results suggested the instability 

of the agarase phenotype of E. coli EPI300 (pNE10) was due to the deletion or 

interruption of agaA and agaB. The exact nature of this instability remains unknown.  
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Figure AI.1 

 

Phenotypic variation of E. coli ECI300 (pNE10) 

 

Pitting and non-pitting colonies of E. coli ECI300 (pNE10) were resuspended in lysis 

buffer and analyzed by zymography.  The pitting colony revealed three bands of agarase 

activity (Lane 1) while the non-pitting colony was agarase negative (Lane2).  These 

results suggested that a deletion or interruption had occurred in agaA and agaB. This also 

indicated that a significant potion of the agarase activity encoded by pNE10 was due to 

agaA and agaB. 
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Figure AI.2 

 

Analysis of the apparent agaA and agaB deletion of pNE10 

 

 The presence of agaA and agaB in agarase positive and agarase negative E. coli pNE10 

was determined using PCR.  Primers were constructed to amplify the full length coding 

region of both agaA and agaB.  Agarase positive (+) and agarase (-) colonies of E. coli 

pNE10 were used as templates. agaA and agaB were detected in agarase positive 

colonies, but not in agarase negative colonies (Panel A).  Similar sized plasmids 

indicative of fosmid DNA (40kb) were isolated from either agarase positive or agarase 

negative colonies (Panel B). 
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Appendix II 

 

Variability of the molecular weight of AgaB 

 

As discussed in Chapter 3 the agarase activity detected in zymograms of AgaB-His 

preparations did not solely migrate at the expected molecular weight.  The agarase 

activity of E. coli Tuner (pAgaB) was associated with the 85kDa protein. Various 

molecular weight standards including Kaleidoscope, Multimark, and Precision Plus were 

used with similar results obtained. It has been reported that multiple forms of post-

translational modification of proteins, such as glycosylation and phosphorylation, may 

cause a higher than expected molecular weight derivatives.  To determine whether the 

shift in molecular weight was due to a specific post-translational modification AgaB-His 

was analyzed for the presence for a glycosylated derivative.  These results of this test did 

not indicate that AgaB-His was a glycosylated derivative.  Later AgaB-His was also 

tested for phosphorylation this test as well did not indicate the presence of a post-

translationally modified derivative. 

 

 It was still unknown whether this apparent modification occurred at a certain region of 

AgaB-His. Truncated derivatives of AgaB-His were constructed to investigate whether 

the shift in molecular weight of AgaB was due to a certain region of the protein. The 

derivative were isolated from E. coli, fractionated on an SDS-PAGE gel, and detected by 
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Western blot analysis.  Each of the derivatives tested were detected at molecular weights 

that deviated from the expected molecular weight (Figure AII.1).  It appeared that each 

derivative was approximately 20kDa greater than expected.  Furthermore, multiple 

proteins derived from S. degradans and expressed in E. coli were later observed at higher 

than expected molecular weights (L. Taylor and M. Howard, unpublished observation). 

As expected two agarolytic proteins were immunoprecipitated from S. degradans culture 

supernatants using α-AgaB (AII.2). It is currently thought that this shift in molecular 

weight may be due to a non denatured region of this protein that causes AgaB to 

aberrantly resolve in SDS-PAGE gels. 
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Figure AII.1 

 

Molecular weight analysis of AgaB-His.   

 

AgaB-His (lane 1) is typically purified as an 86kDa protein and a 65kDa protein other 

degradation products may be present especially in native protein preparations (lane1).  

Three derivatives of AgaB (left) were constructed.  The coding regions included in these 

derivatives are noted below with the predicted molecular weight of each derivative is 

noted.  The truncated products were analyzed in immunoblots using anti-His antibody.  

Full length AgaB-His (lane 1) had an approximate molecular weight of 87kDa. Multiple 

smaller derivatives were also detected in this preparation.  Derivative 2 (lane2) had an 

expected molecular weight of 36kDa, but was detected at approximately 50kDa.  

Derivative 3 (lane3) was an expected 30kDa product but was detected at approximately 

48kDa. Derivative 4 (lane4) had an expected molecular weight of 35kDa but was 

detected at 48 kDa.  Each derivative ran at a higher than expected molecular weight.  The 

cause of this is unknown but has been observed in other proteins from S. degradans. 
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Figure AII.2  

 

Immunoprecipitation of both derivatives of AgaB from supernatants of S. degradans 

 

Concentrated culture supernatants were exposed to anti-AgaB antisera and allowed to 

incubate overnight at 4°C.  To the mixture, protein A coated acrylamide beads were 

added.  The precipitate was collected by centrifugation, washed and boiled.  The 

supernatant was collected and fractionated on an agarose zymogram (lane B) and 

compared to an S. degradans concentrated culture supernatant (lane A). 
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