- 1. Name the following coordination compounds. (2 points each)
- (a) $[Mo(CO)_3(NH_3)_3]$
- (b) [Al(H₂O)₅OH]Cl₂
- (c) Na₂[FeEDTA]
- (d) $[Ni(en)_2]SO_4$
- (e) $[Fe(H_2O)_5O]^+$
- 2. Rank the following Lewis acids from hardest to softest and explain your reasoning: (2 points each)
- (a) BCl₃, BF₃, and AlCl₃
- (b) Al³⁺, Tl³⁺ and Tl⁺
- 3. Complete the following reactions: (2 points each)
- (a) AlCl₃ + LiCH₃ \rightarrow
- (b) SO_3 + Excess $H_2O \rightarrow$
- (c) SbF₅ + LiF \rightarrow
- 4. Balance following redox equations: (2 points each)
- (a) $CN^- + MnO_4^- \rightarrow CNO^- + MnO_2$ (basic)
- (b) $O_2 + A_S \rightarrow HA_SO_2 + H_2O$ (acidic)
- (c) $ClO_4^- + Cl^- \rightarrow ClO^- + Cl_2$ (acidic)
- 5. For each of the following, determine the charge on the complex ion, the oxidation state of the metal, and the coordination number of the metal: (3 points each)
- (a) $K_3[Fe(CN)_6]$
- (b) $[V(NH_3)_4Cl_2]$

6. Blue copper proteins are blue when they contain Cu^{2+} but colorless as Cu^{+} compounds. The color comes from an interaction in which a photon causes an electron to transfer from a sulfur lone pair on a cysteine ligand to the copper center. Why does this charge transfer interaction occur for Cu^{2+} but not Cu^{+} ? (5 points)

7. A portion of the absorption spectrum of a complex ion, $[Cr(H_2O)_4Cl_2]^+$, is represented by the following graph: (2 points each)

Relationships among Wavelength & Color		
Wavelength(nm)	Color Absorbed	Complementary Color
>720	Infrared	Colorless
720	Red	Green
680	Red-orange	Blue-green
610	Orange	Blue
580	Yellow	Indigo
560	Yellow-green	Violet
530	Green	Purple
500	Blue-green	Red
480	Blue	Orange
430	Indigo	Yellow
410	Violet	Lemon-yellow
<400	Ultraviolet	Colorless

- (a) Estimate the crystal field splitting energy (in kilojoules per mole).
- (b) What color is the complex?
- (c) Name the complex cation.
- (d) Draw all possible isomers of the complex.
- (e) Draw the crystal field energy level diagram and show the electron transition that gives the complex its color.

LIET 152 3rd Exam

2011. 12. 10

Dept.:

Student #:

Name:

8. The first battery to find widespread commercial use was the carbon-zinc dry cell, in which the cathode reaction is:

$$2\operatorname{MnO}_2(s) + \operatorname{Zn}^{2+}(aq) + 2e^- \rightarrow \operatorname{ZnMn}_2\operatorname{O}_4(s)$$

In a flashlight, one of these batteries provides 0.0048 A. If the battery contains 4.0 g of MnO_2 and fails after 90% of its MnO_2 is consumed, calculate the operating life of the flashlight. (5 points)

9. For the reaction between strontium and magnesium, $Sr(s) + Mg^{2+}(aq) \leftrightarrow Sr^{2+}(aq) + Mg(s)$ $K_{eq} = 2.7 \times 10^{12}$ Calculate E^o for a strontium-magnesium battery (5 points)

10. An electroplating apparatus is used to coat jewelry with gold. What mass of gold can be deposited from a solution that contains $\operatorname{Au}(\operatorname{CN})_4^-$ ions if a current of 5.0 A flows for 30.0 min? (10 points)

11. Seawater is approximately 0.5 M each in Na^+ and Cl^- ions. By evaporation, NaCl ($K_{\rm sp}$ = 6.2) can be precipitated from this solution. If 1.00×10^2 L of seawater is evaporated, at what volume will the first solid NaCl appear? (5 points)

- 12. Phosphate ions are a major pollutant of water supplies. They can be removed by precipitation using solutions of Ca^{2^+} ions because the K_{sp} of calcium phosphate is 2.0 $\times 10^{-33}$. Suppose that 3.00×10^3 L of wastewater containing $\text{PO}_4^{3^-}$ at 2.2×10^{-3} M is treated by adding 120 moles of solid CaCl_2 (which dissolves completely). (4 points each)
- (a) What is the concentration of phosphate ions after treatment?
- (b) What mass of calcium phosphate precipitates?
- 13. Thionyl chloride $(SOCl_2)$ is used to remove water of hydration from metal halide hydrates. Besides the anhydrous metal halide, the products are SO_2 and $HCl.(4\ points\ each)$
- (a) Draw the Lewis structure of SOCl₂.
- (b) Balance the reaction of iron(III) chloride hexahydrate with $SOCl_2\$
- 14. Suppose you titrate 0.300 L of a 0.200 M solution of sodium formate with 6.0 M HCl. (K_a for formic acid is 1.8×10^{-4}). (4 points each)
- (a) What is the pH of the solution before beginning the titration?
- (b) What is the pH of the solution halfway through the titration?
- (c) What is the pH at the stoichiometric point?