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INTRODUCTION

The choice of an expression system for the high-level pro-
duction of recombinant proteins depends on many factors.
These include cell growth characteristics, expression levels,
intracellular and extracellular expression, posttranslational
modifications, and biological activity of the protein of interest,
as well as regulatory issues in the production of therapeutic
proteins (191, 254). In addition, the selection of a particular
expression system requires a cost breakdown in terms of pro-
cess, design, and other economic considerations. The relative
merits of bacterial, yeast, insect, and mammalian expression
systems have been examined in detail in an excellent review by
Marino (362). In addition, Datar et al. (121) have analyzed the
economic issues associated with protein production in bacterial
and mammalian cells.
The many advantages of Escherichia coli have ensured that it

remains a valuable organism for the high-level production of
recombinant proteins (177a, 197, 254, 362, 406, 426, 510).
However, in spite of the extensive knowledge on the genetics
and molecular biology of E. coli, not every gene can be ex-
pressed efficiently in this organism. This may be due to the
unique and subtle structural features of the gene sequence, the

stability and translational efficiency of mRNA, the ease of
protein folding, degradation of the protein by host cell pro-
teases, major differences in codon usage between the foreign
gene and native E. coli, and the potential toxicity of the protein
to the host. Fortunately, some empirical “rules” that can guide
the design of expression systems and limit the unpredictability
of this operation in E. coli have emerged. The major drawbacks
of E. coli as an expression system include the inability to per-
form many of the posttranslational modifications found in eu-
karyotic proteins, the lack of a secretion mechanism for the
efficient release of protein into the culture medium, and the
limited ability to facilitate extensive disulfide bond formation.
On the other hand, many eukaryotic proteins retain their full
biological activity in a nonglycosylated form and therefore can
be produced in E. coli (see, e.g., references 170, 342, and 486).
In addition, some progress has been made in the areas of
extracellular secretion and disulfide bond formation, and these
will be examined.
The objectives of this review are to integrate the extensive

published literature on gene expression in E. coli, to focus on
expression systems and experimental approaches useful for the
overproduction of proteins, and to review recent progress in
this field. Areas that have been covered in detail in recent
reviews are included in abbreviated form in order to present
their key conclusions and to serve as a source for further
reading. As a matter of definition, the terms “periplasmic ex-
pression” and “extracellular secretion” will be used to refer to
the targeting of protein to the periplasm and the culture me-
dium, respectively, to avoid confusion.

* Mailing address: Department of Molecular Biology, T Cell Sci-
ences, Inc., 119 4th Ave., Needham, MA 02194.
† This review is dedicated to the memory of William John Steele, an

inspired scientist, a great man, mentor, and friend, who died on 8
December 1995. The world is a better place because of him.

512



CONFIGURATION OF EFFICIENT
EXPRESSION VECTORS

The construction of an expression plasmid requires several
elements whose configuration must be carefully considered to
ensure the highest levels of protein synthesis (22, 64, 120, 142,
355, 538, 612). The essential architecture of an E. coli expres-
sion vector is shown in Fig. 1. The promoter is positioned
approximately 10 to 100 bp upstream of the ribosome-binding
site (RBS) and is under the control of a regulatory gene, which
may be present on the vector itself or integrated in the host
chromosome. Promoters of E. coli consist of a hexanucleotide
sequence located approximately 35 bp upstream of the tran-
scription initiation base (235 region) separated by a short
spacer from another hexanucleotide sequence (210 region)
(174, 232, 236, 344, 465). There are many promoters available
for gene expression in E. coli, including those derived from
gram-positive bacteria and bacteriophages (Table 1). A useful
promoter exhibits several desirable features: it is strong, it has
a low basal expression level (i.e., it is tightly regulated), it is
easily transferable to other E. coli strains to facilitate testing of
a large number of strains for protein yields, and its induction is
simple and cost-effective (612).
Downstream of the promoter is the RBS, which spans a

region of approximately 54 nucleotides bound by positions235
(62) and 119 to 122 of the mRNA coding sequence (269).
The Shine-Dalgarno (SD) site (514, 515) interacts with the 39
end of 16S rRNA during translation initiation (133, 532). The
distance between the SD site and the start codon ranges from
5 to 13 bases (93), and the sequence of this region should
eliminate the potential of secondary-structure formation in the
mRNA transcript, which can reduce the efficiency of transla-
tion initiation (198, 229). Both 59 and 39 regions of the RBS
exhibit a bias toward a high adenine content (140, 499, 502).
The transcription terminator is located downstream of the

coding sequence and serves both as a signal to terminate tran-
scription (465) and as a protective element composed of stem-
loop structures, protecting the mRNA from exonucleolytic
degradation and extending the mRNA half-life (35, 37, 147,
227, 249, 597).
In addition to the above elements that have a direct impact

on the efficiency of gene expression, vectors contain a gene that
confers antibiotic resistance on the host to aid in plasmid
selection and propagation. Ampicillin is commonly used for
this purpose; however, for the production of human therapeu-

tic proteins, other antibiotic resistance markers are preferable
to avoid the potential of human allergic reactions (42). Finally,
the copy number of plasmids is determined by the origin of
replication. In specific cases, the use of runaway replicons
results in massive amplification of plasmid copy number con-
comitant with higher yields of plasmid-encoded protein (387,
415). In other cases, however, there appeared to be no advan-
tage in using higher-copy-number plasmids over pBR322-
based vectors (612). Furthermore, Vasquez et al. (572) re-
ported that increasing the copy number of the plasmid
decreased the production of trypsin in E. coli and Minas and
Bailey (379) found that the presence of strong promoters on
high-copy-number plasmids severely impaired cell viability.

TRANSCRIPTIONAL REGULATION

Promoters
A promoter for use in E. coli (Table 1) should have certain

characteristics to render it suitable for high-level protein syn-
thesis (207, 612). First, it must be strong, resulting in the
accumulation of protein making up 10 to 30% or more of the
total cellular protein.
Second, it should exhibit a minimal level of basal transcrip-

tional activity. Large-scale gene expression preferably employs
cell growth to high density and minimal promoter activity,
followed by induction or derepression of the promoter. The
tight regulation of a promoter is essential for the synthesis of
proteins which may be detrimental to the host cell (see, e.g.,
references 68, 137, 544, 563, and 599). For example, the toxic
rotavirus VP7 protein effectively kills cells and must be pro-
duced under tightly regulated conditions (592). However, in
some cases, promoter stringency is inconsequential, because
even the smallest amount of gene product drastically curtails
bacterial survival because of its severe toxicity (615). For ex-
ample, molecules that inactivate ribosomes or destroy the
membrane potential would be lethal. Toxicity to the host is not
restricted to foreign genes but may also result from the over-
expression of certain native genes, such as the traT gene, which
encodes an outer membrane lipoprotein (423), the EcoRI re-
striction endonuclease in the absence of the corresponding
protective EcoRI modification methylase (423), and the lon
gene (558). Furthermore, incompletely repressed expression
systems can cause plasmid instability, a decrease in cell growth
rate, and loss of recombinant protein production (40, 98, 374).

FIG. 1. Schematic presentation of the salient features and sequence elements of a prokaryotic expression vector. Shown as an example is the hybrid tac promoter
(P) consisting of the 235 and 210 sequences, which are separated by a 17-base spacer. The arrow indicates the direction of transcription. The RBS consists of the SD
sequence followed by an A1T-rich translational spacer that has an optimal length of approximately 8 bases. The SD sequence interacts with the 39 end of the 16S rRNA
during translational initiation, as shown. The three start codons are shown, along with the frequency of their usage in E. coli. Among the three stop codons, UAA
followed by U is the most efficient translational termination sequence in E. coli. The repressor is encoded by a regulatory gene (R), which may be present on the vector
itself or may be integrated in the host chromosome, and it modulates the activity of the promoter. The transcription terminator (TT) serves to stabilize the mRNA and
the vector, as explained in the text. In addition, an antibiotic resistance gene, e.g., for tetracycline, facilitates phenotypic selection of the vector, and the origin of
replication (Ori) determines the vector copy number. The various features are not drawn to scale.
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Lanzer and Bujard carried out extensive studies on the com-
monly used lac-based promoter-operator systems and demon-
strated up to 70-fold differences in the level of repression when
the operator was placed in different positions within the pro-
moter sequence (328). Thus, when the 17-bp operator was
placed between the 210 and 235 hexameric regions, a 50- to
70-fold-greater repression was caused than when the operator
was placed either upstream of the 235 region or downstream
of the 210 site (328).
A third important characteristic of a promoter is its induc-

ibility in a simple and cost-effective manner. The most widely
used promoters for large-scale protein production use thermal
induction (l pL) or chemical inducers (trp) (Table 1). The
isopropyl-b-D-thiogalactopyranoside (IPTG)-inducible hybrid
promoters tac (123) or trc (65) are powerful and widely used
for basic research. However, the use of IPTG for the large-
scale production of human therapeutic proteins is undesirable
because of its toxicity (159) and cost. These drawbacks of IPTG
have until now precluded the use of the tac or trc promoter
from the production of human therapeutic proteins and ren-
dered the large-scale expression of proteins for basic research
prohibitively expensive. The availability of a mutant lacI(Ts)
gene that encodes a thermosensitive lac repressor (72) now
permits the thermal induction of these promoters (4, 9, 234). In
addition, the new vectors exhibit tight regulation of the trc

promoter at 308C (9). Two different lac repressor mutants that
are thermosensitive (586, 604) as well as IPTG inducible (586)
have recently been described. Although the wild-type lacI gene
can be thermally induced (602, 603), this system is not tightly
regulated and cannot be used in lacIq strains, since a temper-
ature shift does not override the tight repression caused by the
overproduction of the lac repressor (603). Thus, this system is
limited to the production of some proteins that are not detri-
mental to the host cell.
Cold-responsive promoters, although much less extensively

studied than many of the other promoters included here, have
been shown to facilitate efficient gene expression at reduced
temperatures. The activity of the phage l pL promoter was
highest at 208C and declined as the temperature was raised
(187). This cold response of the pL promoter is positively
regulated by the E. coli integration host factor, a sequence-
specific, multifunctional protein that binds and bends DNA
(164, 165, 188). The promoter of the major cold shock gene
cspA (206, 551) was similarly demonstrated to be active at
reduced temperatures (187). Molecular dissection of the cspA
and pL promoters led to the identification of specific DNA
regions involved in the enhancement of transcription at lower
temperatures; this has allowed the development of pL deriva-
tives that are highly active at temperatures below 208C (433).
The rationale behind the use of cold-responsive promoters for

TABLE 1. Promoters used for the high-level expression of genes in E. coli

Promoter (source) Regulation Induction Reference(s)

lac (E. coli) lacI, lacIq IPTG 17, 18, 221, 460, 610
lacI(Ts),a lacIq(Ts)a Thermal 234
lacI(Ts)b Thermal 604

trp (E. coli) Trp starvation, indole acrylic acid 365, 470, 549, 612
lpp (E. coli) IPTG, lactosec 128a, 142, 185, 275, 401
phoA (E. coli) phoB (positive), phoR (negative) Phosphate starvation 84, 274, 291, 306, 382, 562
recA (E. coli) lexA Nalidixic acid 145, 260, 428, 516
araBAD (E. coli) araC L-Arabinose 554
proU (E. coli) Osmolarity 247
cst-1 (E. coli) Glucose starvation 564
tetA (E. coli) Tetracycline 125, 523
cadA (E. coli) cadR pH 102, 480, 561
nar (E. coli) fnr (FNR, NARL) Anaerobic conditions, nitrate ion 335
tac, hybrid (E. coli) lacI, lacIq IPTG 7, 123, 471

lacId Thermal 603
trc, hybrid (E. coli) lacI, lacIq IPTG 65

lacI(Ts),a lacIq(Ts)a Thermal 4, 9
lpp-lac, hybrid (E. coli) lacI IPTG 261, 263
Psyn, synthetic (E. coli) lacI, lacIq IPTG 186
Starvation promoters (E. coli) 366
pL (l) lcIts857 Thermal 43, 80, 129, 130, 240, 454
pL-9G-50, mutant (l) Reduced temperature (,208C) 187, 433
cspA (E. coli) Reduced temperature (,208C) 187, 206, 433, 551
pR, pL, tandem (l) lcIts857 Thermal 150, 493
T7 (T7) lcIts857 Thermal 537, 548
T7-lac operator (T7) lacIq IPTG 141, 190, 239
lpL, pT7, tandem (l, T7) lcIts857, lacIq Thermal, IPTG 375
T3-lac operator (T3) lacIq IPTG 190, 605
T5-lac operator (T5) lacIq, lacI IPTG 71, 390
T4 gene 32 (T4) T4 infection 143, 210
nprM-lac operator (Bacillus spp.) lacIq IPTG 605
VHb (Vitreoscilla spp.) Oxygen, cAMP-CAPe 304, 305
Protein A (Staphylococcus aureus) 1,256, 349

a lacI gene with single mutation, Gly-187 3 Ser (72).
b lacI gene with three mutations, Ala-241 3 Thr, Gly-265 3 Asp, and Ser-300 3 Asn (604).
c The constitutive lpp promoter (Plpp) was converted into an inducible promoter by insertion of the lacUV5 promoter/operator region downstream of Plpp. Thus,

expression occurs only in the presence of a lac inducer (142).
dWild-type lacI gene.
e cAMP-CAP, cyclic AMP-catabolite activator protein.

514 MAKRIDES MICROBIOL. REV.



gene expression is based on the proposition that the rate of
protein folding will be only slightly affected at about 15 to 208C,
whereas the rates of transcription and translation, being bio-
chemical reactions, will be substantially decreased. This, in
turn, will provide sufficient time for protein refolding, yielding
active proteins and avoiding the formation of inactive protein
aggregates, i.e., inclusion bodies, without reducing the final
yield of the target protein (433). It would be interesting to
compare the transcriptional activities of other promoters de-
rived from cold shock genes (288, 402).
Other promoters that have been characterized recently (Ta-

ble 1) possess attractive features and should provide additional
options for high-level gene expression systems. For example,
the pH promoter (102, 561) is very strong: recombinant pro-
teins are produced at levels of up to 40 to 50% of the total
cellular protein (480). This expression level, however, will
probably vary for different genes, because protein synthesis
depends on translational efficiency as well as promoter
strength.
E. coli promoters are usually considered in terms of a core

region composed of the 210 and 235 hexameric sequences
including a 15- to 19-bp spacer between the two hexamers
(344). However, it has been proposed that elements outside
the core region stimulate promoter activity (134). Many studies
have demonstrated that sequences upstream of the core pro-
moter increase the rate of transcription initiation in vivo (172,
213, 264, 290, 618). Gourse and colleagues have shown that a
DNA sequence, the UP element, located upstream of the 235
region of the E. coli rRNA promoter rrnB P1, stimulates tran-
scription by a factor of 30 in vitro and in vivo (290, 453, 468).
The UP element functions as an independent promoter mod-
ule because when it is fused to other promoters such as lacUV5,
it stimulates transcription (453, 468). Upstream activation in E.
coli and other organisms has been reviewed in detail (110). The
ability of the UP element to act as a transcriptional enhancer
when fused to heterologous promoters may be of general util-
ity in high-level expression systems.
Although the extraordinary strength of the rRNA promoters

P1 and P2 is well documented (173, 414), these promoters have
not been exploited for the high-level production of proteins in
E. coli, mainly because their regulation is more difficult. The in
vivo synthesis of rRNA is subject to growth rate control (213),
and P1 and P2 are active during periods of rapid cell growth
and are downregulated when cells are in the stationary phase
of growth. Therefore, the rRNA promoters would be contin-
uously active or “leaky” during the preinduction phase. In vivo
P2 is the weaker, less inducible promoter in rapidly growing
cells. However, when uncoupled from P1, the P2 promoter
shows increased activity (up to 70% of that of P1) and becomes
sensitive to the stringent response, indicating that in its native
tandem context, P2 is partially occluded (173, 289). Brosius
and Holy (66) inserted the lac operator sequence downstream
of the rrnB rRNA P2 promoter and achieved repression of P2
in strains harboring the lacIq gene. Transcriptional activity was
measured by the production of chloramphenicol acetyltrans-
ferase and by the expression of the 4.5S RNA. However, the P2
construction was only half as active as the tac promoter, and
furthermore, when the rrnB P1 promoter was placed upstream
of the P2 promoter, transcriptional repression was incomplete
(66).
It is tempting to speculate that rRNA promoters could be

tightly regulated by using the concept of inverted promoters
(see the section on tightly regulated expression systems, be-
low). Thus, a rRNA promoter could be cloned upstream of the
gene of interest but in the opposite transcriptional direction.
The use of l integration sites and a regulated l integrase

would facilitate the inversion of the promoter for induction,
and the presence of strong transcription terminators upstream
of the highly active promoter would prevent destabilization of
the vector during the preinduction phase.

Transcriptional Terminators
In prokaryotes, transcription termination is effected by two

different types of mechanisms: Rho-dependent transcription
termination depends on the hexameric protein rho, which
causes the release of the nascent RNA transcript from the
template. In contrast, rho-independent termination depends
on signals encoded in the template, specifically, a region of
dyad symmetry that encodes a hairpin or stem-loop structure in
the nascent RNA and a second region that is rich in dA and dT
and is located 4 to 9 bp distal to the dyadic sequence (83, 122,
439, 455, 456, 465, 594, 609). Although often overlooked in the
construction of expression plasmids, efficient transcription ter-
minators are indispensable elements of expression vectors, be-
cause they serve several important functions. Transcription
through a promoter may inhibit its function, a phenomenon
known as promoter occlusion (5). This interference can be
prevented by the proper placement of a transcription termina-
tor downstream of the coding sequence to prevent continued
transcription through another promoter. Similarly, a transcrip-
tion terminator placed upstream of the promoter that drives
expression of the gene of interest minimizes background tran-
scription (413). It is also known that transcription from strong
promoters can destabilize plasmids as a result of overproduc-
tion of the ROP protein involved in the control of plasmid copy
number as a result of transcriptional readthrough into the
replication region (539). In addition, transcription terminators
enhance mRNA stability (237, 404, 597) and can substantially
increase the level of protein production (237, 572). Particularly
effective are the two tandem transcription terminators T1 and
T2, derived from the rrnB rRNA operon of E. coli (67), but
many other sequences are also quite effective.

Transcriptional Antiterminators
In bacteria, many operons involved in amino acid biosynthe-

sis contain transcriptional attenuators at the 59 end of the first
structural gene. The attenuators are regulated by the amino
acid products of the particular operon. Thus, the availability of
the cognate charged tRNA leads to the formation of a second-
ary structure in the nascent transcript followed by ribosome
stalling. In the absence of the cognate charged tRNA, an an-
titerminator structure which prevents formation of the RNA
hairpin in the terminator and prevents transcriptional termi-
nation is formed (325). The antiterminator element that en-
ables RNA polymerase to override a rho-dependent termina-
tor in the ribosomal RNA operons has been identified and is
referred to as boxA (41, 341). Transcriptional antitermination
is a remarkably complex process that involves many known and
as yet unidentified host factors. This topic has been covered in
great detail in two excellent recent reviews (110, 456). Here, we
will briefly consider the use of antitermination elements that
are useful in the expression of heterologous genes in E. coli.
One of the more powerful and widely used expression sys-

tems in E. coli makes use of the phage T7 late promoter (537,
548). The activity of this system depends on a transcription unit
that supplies the T7 RNA polymerase, whose tight repression
is essential to avoid leakiness of the T7 promoter. Several
approaches have been used to regulate the expression of the
T7 polymerase, and each has its own unique disadvantages
(374). Mertens et al. (374) addressed this problem by con-
structing a reversibly attenuated T7 RNA polymerase expres-
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sion cassette based on l pL regulation. Thus, the basal expres-
sion level of the T7 polymerase was attenuated by inserting
three tandemly arranged transcription terminators between
the promoter and the gene encoding the T7 polymerase. For
induction, the phage l-derived nutL-dependent antitermina-
tion function was also incorporated to override the transcrip-
tion block. Alternatively, an IPTG-inducible promoter was
similarly used, allowing conditional reversion of attenuation
upon induction (374).
The transcriptional antitermination region from the E. coli

rrnB rRNA operon has been used in the expression vector
pSE420, which utilizes the trc promoter (64). The rationale in
this case was to facilitate transcription through areas of severe
secondary structure, thus reducing the possibility of premature
transcription termination by the host RNA polymerase. In this
case, however, the presence of the rrnB antiterminator is ap-
parently ineffective (64a).

Tightly Regulated Expression Systems

The advantages of tightly regulated promoters (see the sec-
tion on promoters, above) have led to the design of many
ingenious and highly repressible expression systems that are
particularly useful for the expression of genes whose products
are detrimental to host growth. The various approaches in-
clude the use of a “plating” method (544), the increase of the
repressor-to-operator ratio (9, 391), induction by infection
with mutant phage (68, 137), attenuation of promoter strength
on high-copy-number vectors (587), the use of transcription
terminators (374, 375, 413) in combination with antitermina-
tors (374), the use of an inducible promoter within a copy-
number-controllable plasmid (558), “cross-regulation” systems
(97, 98), cotransformation of plasmids utilizing the SP6 RNA
polymerase (473), and the use of antisense RNA complemen-
tary to the mRNA of the cloned gene (423). Finally, one
elegant approach involves the principle of invertible promot-
ers: the promoter, flanked by two l integration sites, faces in
the direction opposite that of the gene to be expressed and is
inverted only by inducing site-specific genetic recombination
mediated by the l integrase (16, 21, 235, 441, 599).
The above systems have advantages as well as disadvantages,

depending on their intended use. Thus, methods that rely on
solid media cannot easily be used for large-scale expression.
High-level repressor systems often cause a substantial decrease
in protein yield (9, 531), thus necessitating optimization of the
repressor-to-operator ratio (234). Induction mediated by l
phage adds further complexity to the system. The use of in-
verted promoter circuits involves complex vector construc-
tions. Although most of the above systems have not yet been
used for the high-level production of proteins on a large scale,
they nevertheless provide important tools for the armamentar-
ium of gene expression.

TRANSLATIONAL REGULATION

mRNA Translational Initiation

The extensive knowledge of the transcriptional process has
allowed the use of prokaryotic promoters in cassette fashion,
unaffected by the surrounding nucleotide context (232, 236,
317, 344). However, the determinants of protein synthesis ini-
tiation have been more difficult to decipher; this is not surpris-
ing, considering the complexity of this process (224, 579). It is
now clear that the wide range of efficiencies in the translation
of different mRNAs is predominantly due to the unique struc-
tural features at the 59 end of each mRNA species. Thus, in

contrast to the portable promoters, no universal sequence for
the efficient initiation of translation has been devised. How-
ever, progress in this aspect of gene expression in E. coli has
been strong, and general “guidelines” have emerged (131, 133,
196, 198, 218, 368, 369, 458, 579, 590).
The translational initiation region of most sequenced E. coli

genes (91%) contains the initiation codon AUG. GUG is used
by about 8% of the genes, and UUG is rarely used as a start
site (1%) (218, 224, 535). In one case, AUU is used as the start
codon for infC (75). This codon is required for the autogenous
regulation of infC. The translational efficiency of the initiation
codons in E. coli has been examined. AUG is the preferred
codon by two- to threefold, and GUG is only slightly better
than UUG (458, 573).
Shine and Dalgarno (514, 515) identified a sequence in the

RBS of bacteriophage mRNAs and proposed that this region,
subsequently called the Shine-Dalgarno (SD) site, interacts
with the complementary 39 end of 16S rRNA during transla-
tion initiation. This was confirmed by Steitz and Jakes (532).
The spacing between the SD site and the initiating AUG codon
can vary from 5 to 13 nucleotides, and it influences the effi-
ciency of translational initiation (196). Extensive studies have
been carried out to determine the optimal nucleotide sequence
of the SD region, as well as the most effective spacing between
the SD site and the start codon (28, 93, 131, 593). Ringquist et
al. (458) examined the translational roles of the RBS and
reached the following conclusions. (i) The SD sequence UAA
GGAGG enables three- to sixfold-higher protein production
than AAGGA for every spacing. (ii) For each SD sequence,
there is an optimal although relatively broad spacing of 5 to 7
nucleotides for AAGGA and 4 to 8 nucleotides for UAAGG
AGG. (iii) For each SD sequence, there is a minimum spacing
required for translation; for AAGGA, this minimum spacing is
5 nucleotides, and for UAAGGAGG, it is 3 to 4 nucleotides.
These spacings suggest that there is a precise physical relation-
ship between the 39 end of 16S rRNA and the anticodon of the
fMet-tRNAf bound to the ribosomal P site (458).
The secondary structure at the translation initiation region

of mRNA plays a crucial role in the efficiency of gene expres-
sion (132, 229, 233, 277, 295). It is believed that the occlusion
of the SD region and/or the AUG codon by a stem-loop struc-
ture prevents accessibility to the 30S ribosomal subunits and
inhibits translation (184, 451, 556). Several different strategies
have been devised to minimize mRNA secondary structure.
The enrichment of the RBS with adenine and thymidine resi-
dues enhanced the expression of certain genes (94, 412, 429).
Similarly, the mutation of specific nucleotides upstream or
downstream of the SD region suppressed the formation of
mRNA secondary structure and enhanced translational effi-
ciency (107, 223, 266, 336, 530, 583). Another approach takes
advantage of the naturally occurring phenomenon of transla-
tional coupling in bacteria (506). The mechanism of transla-
tional coupling has been invoked to account for the coordinate
expression of different proteins from polycistronic mRNAs.
Thus, it was shown that the moderately strong gal promoter
could direct the synthesis of galactokinase at very high levels
when galK was translationally coupled to an upstream gene,
suggesting that even a weak RBS may be highly efficient if it is
accessible to ribosomes (506). Schümperli et al. (506) sug-
gested that this regulatory mechanism might have important
applications in biotechnology for the overproduction of pro-
teins. Indeed, translational coupling has been widely used for
the high-level expression of diverse genes (46, 359, 430, 438,
503, 504, 505, 552).
In addition to the binding of the SD region to the 16S rRNA,

other interactions between mRNA and the ribosome are in-
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volved during the initiation of translation. Cross-linking stud-
ies, for example, have shown that the ribosomal protein S1 is
directly involved in recognition and binding of mRNA by the
30S ribosomal subunit (54). The structural and functional in-
teractions of the many components of the prokaryotic transla-
tional initiation complex have been examined (160, 224, 321,
368, 369, 579).

Translational Enhancers

Sequences that markedly enhance the expression of heter-
ologous genes in E. coli have been identified in both bacteria
and phages. Olins et al. characterized a 9-base sequence from
the T7 phage gene 10 leader (g10-L) that appears to act as a
very efficient RBS. Compared with a consensus SD region, the
g10-L sequence caused a 40- to 340-fold increase in the ex-
pression of several genes (425, 428). When placed upstream of
a synthetic SD sequence, the g10-L sequence caused a 110-fold
increase in the translational efficiency of the lacZ gene, esti-
mated as the ratio of b-galactosidase activity to the level of
lacZ mRNA (427). A model was proposed whereby this se-
quence functions to enhance translation by interacting with
bases 458 to 466 of the 16S rRNA (427). An alternative expla-
nation is that only mRNAs with a weak SD site are likely to
benefit from the g10-L sequence and that this might be due to
stabilization of the mRNA rather than to a specific interaction
with the 16S rRNA (527). Others failed to observe a significant
enhancement of protein production when using the g10-L se-
quence (9, 527). Sequences homologous to the T7 g10-L have
also been identified in other bacteriophages (427).
Several other groups have identified U-rich sequences in the

59 untranslated region (UTR) of mRNAs that act as enhancers
of translation. McCarthy et al. (370) characterized a region in
the E. coli atpE gene, immediately upstream of the SD site.
This 30-base sequence was used to overexpress the human
interleukin-2 and interferon beta genes (371, 493, 494). A U8
sequence upstream of the SD site in the rnd mRNA encoding
RNase D (620) was shown to be essential for efficient transla-
tion of this mRNA (622). Deletion of this region severely
decreased translation without affecting the level of rnd mRNA
or the transcriptional start site (621). Boni and coworkers
demonstrated that the target for similar sequences is the S1
protein of the 30S ribosomal subunit (54, 565).
In a very interesting study, Sprengart et al. (527) demon-

strated that sequences immediately downstream of the start
codon play an important role during translation initiation. A
specific region, termed the downstream box (DB), located be-
tween positions 115 to 126 of the T7 gene 0.3 coding region
(526) or between positions 19 and 121 of the T7 gene 10
coding region (527) functions as a translational enhancer. The
DB region is complementary to 16S rRNA nucleotides 1469 to
1483, termed the anti-downstream box (ADB). Deletion of the
DB abolished translational activity (526). Conversely, optimi-
zation of the complementarity between the DB and the ADB
sequences resulted in the highest level of expression of the dhfr
fusion gene (527). Interestingly, the DB was not functional
when shifted upstream of the initiation colon to the position of
the SD sequence. The DB is present in a number of E. coli and
bacteriophage genes (158, 242, 279, 326, 397, 442, 511).
These findings demonstrate convincingly that in addition to

the SD site and the start codon, other sequences in the mRNA
are important for efficient translation. Although the precise
mechanisms of the observed effects are not always clear, the
few studies cited above indicate that efforts to overexpress
genes may benefit from the use of “translational enhancer”
modules.

mRNA Stability

The process of mRNA degradation provides a major control
point of gene expression in virtually all organisms (467). Al-
though the concept of mRNA and its lability was established 35
years ago (60, 222, 283), the detailed understanding of the
mechanisms of mRNA decay has presented a considerable
challenge for a number of reasons (35). However, in spite of
the many perplexing questions surrounding this important bi-
ological process, progress has been impressive (36, 147, 323,
407, 437). This section will consider specific determinants of
mRNA stability that may have practical applications in the
high-level expression of genes in E. coli.
Several different RNases participate in mRNA degradation

in E. coli, including endonucleases (RNase E, RNase K, and
RNase III) and 39 exonucleases (RNase II and polynucleotide
phosphorylase [PNPase]); no 59 exonuclease has been identi-
fied to date in prokaryotes (35). mRNA degradation is not
effected randomly by nonspecific endonucleolytic cleavage,
since there is no inverse correlation between mRNA length
and half-life (90). Two classes of protective elements are
known to stabilize mRNAs in E. coli. One class consists of
sequences in the 59 UTRs of mRNAs (31), and the other class
includes stem-loop structures from the 39 UTRs and intercis-
tronic regions (249). Some of these elements act as stabilizers
when fused to heterologous mRNAs but only under restricted
conditions. For example, the 59 UTR of the bacteriophage T4
gene 32 increases the half-life of unstable mRNAs in E. coli but
only in T4-infected cells (143, 210). The erythromycin resis-
tance genes (erm) of gram-positive bacteria such as Staphylo-
coccus aureus and Bacillus subtilis encode mRNAs that contain
stabilizing elements in their 59UTRs. However, stabilization of
mRNAs by the ermC and ermA 59 UTRs is induced by an
antibiotic that inhibits translation and causes ribosome stalling
(32, 481, 482). Similarly, the stabilizing effect of the 59 region of
the bacteriophage l pL on l pL-trp transcripts requires l in-
fection (606).
In contrast to the above examples, the 59 UTR of the E. coli

ompA transcript prolongs the half-life of a number of heterol-
ogous mRNAs in E. coli under normal conditions of rapid cell
growth (38, 96, 151, 152). Emory et al. showed that the pres-
ence of a stem-loop structure at or very near the extreme 59
terminus of the ompA 59 UTR is essential for its stabilizing
effect. Furthermore, the half-life of a normally labile mRNA
could be prolonged in E. coli by adding a hairpin structure at
its 59 terminus (152). It was proposed that E. coli mRNAs
beginning with a long single-stranded segment are preferen-
tially targeted by an RNase that interacts with the 59 terminus
before cleaving the mRNA at internal sites (152). It appears,
therefore, that the addition of the ompA 59 stabilizer to het-
erologous genes might enhance gene expression in E. coli.
However, it is possible that mRNAs which contain internal
RNA-processing sites are not protected by the presence of the
59 stabilizer (31).
The other class of mRNA-protective elements consists of 39

UTR sequences that can form stem-loop structures, thereby
blocking exonucleolytic degradation of the transcript from the
39 terminus (249). Wong and Chang (597, 598) identified such
an element within the transcription terminator of the crystal
protein gene of Bacillus thuringiensis. Fusion of this “positive
retroregulator” to the 39 termini of the penicillinase (penP)
gene of Bacillus licheniformis and the human interleukin-2
cDNA increased the half-life of the mRNAs and enhanced the
production of the corresponding polypeptides in both B. sub-
tilis and E. coli. However, as in the case of some of the 59
stabilizers, this 39 retroregulator (597) is unlikely to act as a
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universal mRNA stabilizer. For example, the replacement of
the 39-terminal hairpins of labile mRNAs with those from
stable mRNAs did not enhance the expression of the labile
transcripts (38, 89, 597). Furthermore, it has been suggested
that gene expression might be enhanced by the use of host
strains that are deficient in specific RNases, such as RNase II
or PNPase. This, too, is unlikely to be an effective strategy,
because the absence of RNase II or PNPase, as well as the
overproduction of RNase II, had no effect on the average
half-life of E. coli bulk mRNA (138, 139). Moreover, strains
that were deficient in both RNase II and PNPase were inviable
(138). These and other considerations led to the following
conclusions: “It is unlikely that the disparate stabilities of most
mRNAs that end in a stem-loop result from differential sus-
ceptibility of these terminal stem-loops to penetration by 39
exonucleases,” and, furthermore, “39-exonucleolytic initiation
of RNA decay probably is rare, except in the case of labile
RNAs lacking a substantial 39 hairpin and long-lived RNAs
resistant to attack by all other types of ribonucleases” (35).

Translational Termination

The presence of a stop signal in the mRNA is an indispens-
able component of the translation termination process. In ad-
dition to the three termination codons, UAA, UGA, and
UAG, this complex event involves specific interactions be-
tween the ribosome, mRNA, and several release factors at the
site of termination (112, 553). In E. coli, RF-1 terminates
translation at the UAG stop codon, RF-2 terminates transla-
tion at the UGA codon, and both RFs terminate translation at
the UAA codon (507). An additional factor, RF-3, has recently
been cloned (219, 377).
The design of expression vectors frequently includes the

insertion of all three stop codons to prevent possible ribosome
skipping. In E. coli, there is a preference for the UAA stop
codon (508). A statistical analysis of more than 2,000 E. coli
genes revealed local nonrandomness both in the stop codon
and in the nucleotide immediately following the triplet (445,
553). The same workers tested the strengths of each of 12
possible tetranucleotide “stop signals” (UAAN, UGAN,
UAGN) by an in vivo termination assay that measured termi-
nation efficiency by its direct competition with frameshifting.
Termination efficiencies varied significantly depending on both
the stop codon and the fourth nucleotide, ranging from 80%
(UAAU) to 7% (UGAC). These findings indicate that the
identity of the nucleotide immediately following the stop
codon strongly influences the efficiency of translational termi-
nation in E. coli (445). Therefore, UAAU is the most efficient
translational termination sequence in E. coli.
The sequence context at the 59 end of the stop codon further

influences the efficiency of termination. Thus, the charge and
hydrophobicity properties of the penultimate (22 location)
C-terminal amino acid residue in the nascent peptide cause up
to a 30-fold difference in UGA termination efficiency, whereas
termination at UAG is less sensitive to the nature of the 22
amino acid residue (389). For the 21 location, a-helical,
b-strand, and reverse-turn propensities are determining factors
in UGA termination (48).

PROTEIN TARGETING

Cytoplasmic Expression

The formation of inclusion bodies remains a significant bar-
rier to gene expression in the cytosol. Inclusion bodies do offer
several advantages (Table 2). However, these are small conso-

lation considering the arduous task of refolding the aggregated
protein (469), the uncertainty of whether the refolded protein
retained its biological activity, and the reduction in yield of the
refolded and purified protein. To date, the precise physico-
chemical parameters that contribute to the formation of inclu-
sion bodies remain unclear (322, 363, 381, 469, 495, 588). A
statistical analysis of the composition of 81 proteins that do
and do not form inclusion bodies in E. coli concluded that six
parameters are correlated with inclusion body formation:
charge average, turn-forming residue fraction, cysteine frac-
tion, proline fraction, hydrophilicity, and total number of res-
idues (591). The first two parameters are strongly correlated
with inclusion body formation, while the last four parameters
show a weak correlation. These findings were used to develop
a model to predict the probability of inclusion body formation
solely on the basis of the amino acid composition of a protein
(591). This model was used to predict accurately the insolubil-
ity of the human T-cell receptor Vb5.3 in E. coli (9).
Several experimental approaches have been used to mini-

mize the formation of inclusion bodies and improve protein
folding (496) (Table 2). These include the growth of bacterial
cultures at lower temperatures (77, 495, 497, 517); the selec-
tion of different E. coli strains (302); the substitution of se-
lected amino acid residues (118, 457); the coproduction of
chaperones (8, 29, 52, 337, 613); the use of E. coli thioredoxin
either as a fusion partner (330) or coproduced with the protein
of interest (613); growth and induction of the cells under os-
motic stress in the presence of sorbitol and glycyl betaine (49);
addition of nonmetabolizable sugars to the growth medium
(56); alteration of the pH of the culture medium (541); and the
use of strains deficient in thioredoxin reductase (128, 447).
The reducing potential of the cytoplasmic redox state (156,

270) presents still another problem. Bacterial cytoplasmic pro-
teins contain few cysteine residues and few disulfide bonds
(156, 444). Most proteins that contain stable disulfide bonds
are exported from the cytoplasm (559). Thus, mammalian pro-
teins whose complex tertiary structure depends in part on di-
sulfide bond formation may not be produced in their correct
conformation in the bacterial cytoplasm (443). Bardwell et al.
have proposed that the low frequency of disulfide bonds in
cytoplasmic proteins may be due to the absence from the
cytoplasm of a system for the formation of disulfide bonds,
such as the DsbA and DsbB proteins (26, 27), and/or a mech-
anism that actively prevents the formation of disulfide bonds in
the cytoplasm. Mutant E. coli strains that allow the formation
of disulfide bonds in the cytoplasm were isolated (128). These
mutations inactivate the trxB gene that encodes thioredoxin
reductase (168) and contributes to the sulfhydryl reducing po-
tential of the cytoplasm (258). Thioredoxin itself was unneces-
sary for disulfide bond formation (128). The precise sequence
of events is not clearly understood, and the authors suggested
that the cytoplasm may contain another thioredoxin-like pro-
tein that can be reduced by thioredoxin reductase; in the ab-
sence of thioredoxin reductase, the oxidized form of this un-
known protein facilitates the formation of disulfide bonds in
the cytoplasm (128). Other workers have recently used E. coli
strains carrying null mutations in the trxB gene and observed
significant amounts of functional disulfide-containing protein
in the cytoplasm (447). These thioredoxin reductase-deficient
strains should prove to be valuable tools for the production of
complex proteins in E. coli.
The cytoplasmic expression of a gene without a leader re-

quires the presence of an initiation codon, the most common
one encoding methionine. Although this extraneous amino
acid might have no adverse effect on the protein synthesized,
there are specific cases in which the extra methionine has
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TABLE 2. Relative merits of different compartments for gene expression in E. coli and strategies for the potential
resolution of experimental problems

Compartment property Strategy for resolution Reference(s)

Cytoplasm
Advantages
Inclusion bodies: facile isolation of protein in high
purity and concentration; target protein protected
from proteases; desirable for production of proteins
that, if active, are lethal to host cell

25, 99, 243, 294, 310, 469

Higher protein yields
Simpler plasmid constructs

Disadvantages
Inclusion bodies: protein insolubility; refolding to
regain protein activity; refolded protein may not
regain its biological activity; reduction in final
protein yield; increase in cost of goods

Lower growth temperature 495
Cold shock promoters (lower temperature) 187, 206, 433
Selection of different E. coli strains 302
Amino acid substitutions 118, 282, 394, 457, 536
Coexpression of molecular chaperones 119, 581, 613
Fusion partners 330, 419, 591a
Strains deficient in thioredoxin reductase 128, 447
Sorbitol and glycyl betaine in culture medium 49
Altered pH 541
Sucrose, raffinose in growth medium 56
Rich growth media 386

Reducing environment: does not facilitate disulfide
bond formation

Strains deficient in thioredoxin reductase 128, 447

Authenticity: N-terminal methionine Coexpression of methionine aminopeptidase 483, 513
Proteolysis Protease-deficient strains 211

Mutagenesis of protease cleavage sites 25, 243, 395
Hydrophobicity engineering 394
Fusion partners 59, 319, 393, 395, 567
Fermentation conditions 24, 25, 100, 337
Coexpression of phage T4 pin gene 519–521
Coexpression of molecular chaperones 180, 489, 581
Fusion of multiple copies of target gene 512

Purification is more complex (more protein types) Affinity fusion partners (may require cleavage) 419

Periplasm
Advantages
Purification is simpler (fewer protein types) 416
Proteolysis is less extensive Protease-deficient strains 372, 373

Fusion partners 230
Other approaches as above

Improved disulfide bond formation/folding
N-terminus authenticity

Disadvantages
Signal peptide does not always facilitate transport;
protein export machinery overloaded?

Coexpression of signal peptidase I 570
Co-overexpression of prlF 379
Use of prlF mutant strains 525
Coexpression of prlA4 and secE 435
Expression of pspA 311
Coexpression of sec genes 581
Fusion proteins 220

Reduced folding Amino acid substitutions 314
Coexpression of protein disulfide isomerase 268, 433a

Inclusion bodies may form Coexpression of molecular chaperones 45
Lower growth temperature 57, 58, 82
Sucrose, raffinose in growth medium 56

Inner membrane
To date not useful for high-level gene expression; may
facilitate pharmacological studies, enzymatic activity
studies, and other applications

220, 500

Continued on following page
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profound consequences. For example, the retention of the
initiating methionine in RANTES, a member of the chemo-
kine family of cytokines, completely abrogates the physiologi-
cal activity of this molecule and confers potent antagonist
properties to the methionylated RANTES (448). Similarly, an
unnatural N-terminal methionine residue can alter the confor-
mation of the human hemoglobin molecule (298). Moreover, it
is possible that the presence of an extra amino acid will change
the immunological properties of pharmaceutical proteins and
create difficulties in the approval of a nonnative product for
clinical use.
Bacterial translation is initiated by N-formylmethionine

which is deformylated during synthesis (2) but not necessarily
removed. The N-terminal methionine might be cleaved off by
an endogenous methionine aminopeptidase (39) depending on
the side chain length of the second amino acid residue (250).
Thus, residues with small side chains such as Gly, Ala, Pro, Ser,
Thr, Val, Cys, and, to a lesser degree, Asn, Asp, Leu, and Ile,
facilitate the methionine aminopeptidase-catalyzed removal of
the N-terminal methionine (250). One strategy that has been
successfully used to remove the extra methionine residue from
recombinant proteins in vivo is coexpression of the E. coli
methionine aminopeptidase gene (483, 513). An alternative
method for the in vitro generation of an authentic N terminus
uses the exopeptidase dipeptidylaminopeptidase I. This en-
zyme removes dipeptides from the N terminus but cannot
cleave peptide bonds containing a proline residue. Dalbøge et
al. (117) produced human growth hormone containing an ami-
no-terminal extension which was subsequently removed with
dipeptidylaminopeptidase I to yield authentic growth hor-
mone. This approach requires an amino-terminal extension
that contains an even number of amino acid residues and is
designed so that it enables the in vivo excision of the N-
terminal methionine. In addition, the second or third amino
acid residue in the target protein must be proline (117). A
more elaborate method free of the above restrictions has been

proposed to generate an authentic N terminus for any protein
(117). The cotranslational amino-terminal processing in both
prokaryotes and eukaryotes has been reviewed (301).
Protein degradation is more likely to occur in the cytoplasm

of E. coli than in other compartments (550) because of the
greater number of proteases located there (545, 546). This
topic is examined in the section on protein degradation (be-
low). Finally, another difficulty that affects cytosolic gene ex-
pression is the need to purify the target protein from the pool
of the intracellular proteins. Calculations based on total DNA
content predict that the E. coli chromosome may encode 3,000
to 4,000 genes (547), although not all of these are expressed
under given growth conditions.

Periplasmic Expression

The periplasm offers several advantages for protein target-
ing. In contrast to the cytosolic compartment, the periplasm
contains only 4% of the total cell protein (416) or approxi-
mately 100 proteins (450). The target protein is thus effectively
concentrated, and its purification is considerably less onerous.
The oxidizing environment of the periplasm facilitates the
proper folding of proteins, and the cleaving in vivo of the signal
peptide during translocation to the periplasm is more likely to
yield the authentic N terminus of the target protein. Protein
degradation in the periplasm is also less extensive (550).
The transport of a protein through the inner membrane to

the periplasm normally requires a signal sequence (376, 490,
492, 575–577, 589). A wide variety of signal peptides have been
used successfully in E. coli for protein translocation to the
periplasm. These include prokaryotic signal sequences, such as
the E. coli PhoA signal (127, 424), OmpA (127, 185, 205, 263,
339), OmpT (286), LamB and OmpF (255), b-lactamase (292,
574), enterotoxins ST-II, LT-A, LT-B (171, 388), protein A
from Staphylococcus aureus (1, 256), endoglucanase from B.
subtilis (348), PelB from Erwinia carotovora (44, 340), a degen-

TABLE 2—Continued

Compartment property Strategy for resolution Reference(s)

Extracellular medium
Advantages
Least level of proteolysis 309
Purification is simpler (fewest protein types)
Improved protein folding
N-terminus authenticity

Disadvantages
No secretion usually Fusions to normally secreted proteins 303, 528

Coexpression of kil for permeabilization 296, 309
Fusion to ompF gene components 396
Use of ompA signal sequence 316
Use of protein A signal sequence 256
Coexpression of bacteriocin release protein 261
Use of glycine and bacteriocin release protein 617
Glycine supplement in medium 10, 13
Fusion partners 384

Protein diluted, more difficult to purify Expanded-bed adsorption 231
Concentration, affinity chromatography

Cell surface
To date not useful for high-level gene expression. May
facilitate vaccine development, drug screening,
biocatalysis, protein-protein interactions, and other
applications

85, 111, 169, 178, 179, 253,
345, 352, 405
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erate PelB signal sequence (332), the murine RNase (498), and
the human growth hormone signal (217).
However, protein transport to the bacterial periplasm is a

particularly complex and incompletely understood process
(449, 475, 492), and the presence of a signal peptide does not
always ensure efficient protein translocation through the inner
membrane. For example, whereas the bacterial production of
human immunoglobulins has been quite successful (440, 522),
the production of T-cell receptor variants in the periplasm has
been considerably more difficult in spite of the structural sim-
ilarities between these two families of molecules. Thus, in spite
of the correct cleavage of the signal peptide, no T-cell receptor
protein was detected in the periplasm (see, e.g., references 9
and 417). Correctly folded T-cell receptor fragments in the
periplasm have been obtained by Wülfing and Plückthun (600),
who induced the heat shock response at low temperature to-
gether with overexpression of DsbA. It was thought that this
“shotgun approach” would induce a whole variety of chaper-
ones, including yet undiscovered periplasmic ones (581). It is
now clear that besides the signal peptide, other structural fea-
tures in proteins are involved in membrane transport (55, 87,
108, 333, 346, 356, 466, 542).
Strategies for the improved translocation of proteins to the

periplasm include the supply of components involved in pro-
tein transport and processing: the overproduction of the signal
peptidase I (570), the use of prlF mutant strains (525), coex-
pression of the prlA4 and secE genes (435), coexpression of the
prlF gene (379), expression of the pspA gene (311), and down-
regulation (375), deletion (9), or nonuse (422) of the b-lacta-
mase gene to avoid the possible overloading of transport mech-
anisms or competition for processing of signal peptides. The
possibility of transport limitations is indicated in the study of
Hsiung et al. (263), who observed the intracellular accumula-
tion of a greater amount of human growth hormone precursor
after IPTG induction, but no increase in the amount of trans-
located human growth hormone. In general, the mechanisms
governing the translocation of proteins to the periplasm are
not clearly understood yet.

Extracellular Secretion

The targeting of synthesized proteins for secretion to the
culture medium presents significant advantages (Table 2). Un-
fortunately, E. coli normally secretes very few proteins and the
manipulation of the various transport pathways to facilitate
secretion of foreign proteins remains a formidable task (50).
An understanding of the secretory pathways in E. coli is nec-
essary to develop an appreciation of the difficulties involved in
protein secretion. Pugsley (449) offers a detailed and excellent
account of the secretory pathways in gram-negative bacteria,
and Stader and Silhavy (528) examine heterologous protein
secretion in a comprehensive and critical review. What follows
is a brief summary of the main issues.
The methodological approaches to protein secretion in E.

coli may be conveniently divided into two categories: (i) the
exploitation of existing pathways for “truly” secreted proteins,
as defined by rigorous criteria (528), and (ii) the use of signal
sequences, fusion partners, permeabilizing proteins, nutrients,
or other agents that effect protein secretion as a result of
“leakage” or selective and limited permeability of the outer
membrane. The first approach offers the advantage of specific
secretion of the protein of interest and hence minimum con-
tamination by nontarget proteins. Perhaps the best-known ex-
ample is the hemolysin gene, which has been used for con-
struction of secreted hybrid proteins (50, 257, 303, 357, 528).
Secretion, however, is not a particularly efficient process. The

second approach relies on the induction of limited leakage of
the outer membrane to cause protein secretion (361, 422, 543).
Examples are the use of the pelB leader (44), the ompA leader
(316), the protein A leader (1, 256), the coexpression of bac-
teriocin release protein (261), the mitomycin-induced bacteri-
ocin release protein along with the addition of glycine to the
culture medium (617), and the coexpression of the kil gene for
membrane permeabilization (296, 309). Some of these studies
reported low or no extracellular activity of the cytoplasmic
enzyme b-galactosidase, indicating that there was no apprecia-
ble cell lysis (13, 316, 617). In general, protein yields were
modest.

FUSION PROTEINS

In recent years, there has been a remarkable increase in the
sophistication and variety of fusion proteins used for biological
research. The utility of fusion proteins spans an ever widening
range of applications, and these have been examined in a series
of comprehensive and excellent reviews (161, 331, 408, 409,
419, 487, 529, 566, 567). Table 3 includes most of the known
fusion moieties. Other studies have addressed the design and
engineering of excision sites, the sine qua non of fusion pro-
teins, for the chemical or enzymatic cleavage and removal of
fusion partners (78, 162, 163, 409, 419, 567). This section will
briefly summarize the use of selected fusion systems that have
a direct impact on high level production and, in some cases,
secretion of target proteins.
Uhlén and colleagues developed a multifunctional fusion

partner based on staphylococcal protein A or synthetic deriv-
atives (Z) thereof. In addition to its utility as an affinity tag for
purification (384, 411, 568), the protein A moiety acts as a
solubilizing partner to improve folding (477, 478), and the
presence of the protein A signal peptide causes the secretion of
the gene product to the culture medium (1, 384, 385).
An alternative fusion partner is derived from streptococcal

protein G (SPG), a bacterial cell wall protein that has separate
binding regions for albumin within the amino-terminal domain
and for immunoglobulin G within the carboxyl-terminal do-
main (157). A minimal albumin-binding domain consisting of
46 amino acid residues derived from SPG (411) was used as an
affinity tag for the purification of cDNA-encoded proteins
(329). Furthermore, the combination of both protein A and
SPG domains (148, 418) formed a tripartite fusion protein,
thus providing an additional purification option and further
protecting the target protein from proteolytic degradation
(230, 393). An interesting and potentially important applica-
tion of the SPG albumin-binding domain is its ability to stabi-
lize short-lived proteins in the peripheral circulation of mam-
mals, an effect mediated by the binding of the SPG domain to
serum albumin, a protein with a long half-life. Studies have
demonstrated that the SPG-derived fusion partners enhanced
the half-life of human soluble CD4 in mice (420) and reduced
the clearance of human soluble complement receptor type 1 in
rats (360).
A more elaborate affinity system that uses seven different

affinity tags was recently constructed (410). This multipartite
system allows the use of a wide variety of conditions for both
the binding and elution steps and provides a useful tool for the
production, detection, and purification of recombinant proteins.
The linkage of thioredoxin to target proteins dramatically

increases the solubility of fusion proteins produced in the E.
coli cytoplasm and prevents the formation of inclusion bodies
(330, 591a). Similarly, the thioredoxin homolog DsbA (26, 27,
216) has been used as a fusion partner to direct the transport
of proteins to the periplasm (109).

VOL. 60, 1996 HIGH-LEVEL GENE EXPRESSION IN E. COLI 521



The fusion of genes to the ubiquitin sequence increased the
yield of proteins from undetectable to 20% of the total cellular
protein (76, 595). Similar results have been obtained by many
other workers (reference 319 and references therein). The
remarkable increase in protein yield was thought to be due to
protection of the target protein from proteolysis, improved
folding, and efficient mRNA translation (76). Ubiquitin or the
ubiquitin metabolic pathway is absent in prokaryotic organ-
isms. To remove the ubiquitin moiety from fusion proteins,
Baker et al. (19) coexpressed the ubiquitin-specific protease
Ubp2 in E. coli, thus effecting the cotranslational cleavage of
ubiquitin from the fusion protein.

MOLECULAR CHAPERONES

It is now well established that the efficient posttranslational
folding of proteins, the assembly of polypeptides into oligo-
meric structures, and the localization of proteins are mediated
by specialized proteins termed molecular chaperones (33, 69,
104, 149, 183, 189, 246, 350, 364, 601). The demonstration that
efficient production and assembly of prokaryotic ribulose
bisphosphate carboxylase in E. coli require both GroES and

GroEL proteins (208) led to an increasing interest in the use of
molecular chaperones for high-level gene expression in E. coli
(106). The experimental results from the use of chaperones,
however, have been inconsistent, and thus far the effects of
chaperone coproduction on gene expression in E. coli appear
to be protein specific (581). For example, although the
GroESL plasmids have been disseminated to more that 400
workers, only half of those who used them reported an im-
provement in gene expression (350a). This is consistent with
recent observations that whereas the coproduction of thiore-
doxin in E. coli caused a dramatic increase in the solubility of
eight vertebrate proteins, the coproduction of the GroESL
chaperones increased the solubilities of only four of those
proteins (613). It is also unclear whether the in vivo levels of
different chaperone species are limiting under conditions of
gene overexpression. For example, Knappik et al. (312) exam-
ined the effect of folding catalysts on the production of anti-
body fragments in the periplasm. Whereas the presence of the
disulfide-forming protein DsbA was absolutely required in
vivo, its overexpression did not increase the yield of antibody
fragments. Wall and Plückthun (581) and Georgiou and Valax
(180) revisited the assumptions and expectations behind the

TABLE 3. Fusion partners and their applicationsa

Fusion partner Ligand/matrix Purification conditions

Flag peptide Anti-Flag monoclonal antibodies, M1, M2 Low calcium, EDTA, glycine
His6 Ni21-nitrilotriacetic acid Imidazole
Glutathione-S-transferase Glutathione-Sepharose Reduced glutathione
Staphylococcal protein A Immunoglobulin G-Sepharose Low pH, IgG-affinity ligand
Streptococcal protein G Albumin Low pH, albumin-affinity ligand
Calmodulin Organic ligands, peptide ligands, DEAE-

Sephadex
Low calcium

Thioredoxin ThioBond resin Ion exchange
b-Galactosidase TPEGb-Sepharose Borate
Ubiquitin
Chloramphenicol acetyltransferase Chloramphenicol-Sepharose Chloramphenicol
S-peptide (RNase A, residues 1–20) S-protein (RNase A, residues 21–124) Denaturing or nondenaturing

conditions
Myosin heavy chain Differential solubility in low/high salt
DsbA
Biotin subunit (in vivo biotinylation)
Avidin Biotin Denaturation (urea, heat)
Streptavidin Biotin Denaturation (urea, heat)
Strep-tag Streptavidin 2-Iminobiotin, diaminobiotin
c-myc Anti-myc antibody
Dihydrofolate reductase Methotrexate-agarose Folate buffer
CKSc

Polyarginine S-Sepharose NaCl
Polycysteine Thiopropyl-Sepharose Dithiothreitol
Polyphenylalanine Phenyl-Superose Ethylene glycol
lac repressor lac operator Lactose analog, DNase, restriction

endonuclease
T4 gp55
Growth hormone N terminus
Maltose-binding protein Amylose resin Maltose
Galactose-binding protein Galactose-Sepharose Galactose
Cyclomaltodextrin glucanotransferase a-Cyclodextrin-agarose a-Cyclodextrin
Cellulose-binding domain Cellulose Water
Hemolysin A, E. coli
l cII protein
TrpE or TrpLE
Protein kinase site(s)
(AlaTrpTrpPro)n Aqueous two-phase extraction
HAId epitope
BTag (VP7 protein region of
bluetongue virus)

Anti-BTag antibodies

Green fluorescent protein
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use of chaperones for gene expression and provided detailed
and rigorous assessments. This section is a distillation of the
take-home lessons.
Normally, protein folding proceeds toward a thermodynam-

ically stable end product (434, 476). Proteins that are drasti-
cally destabilized will probably fold incorrectly, even in the
presence of chaperones. Thus, the truncation of polypeptides,
the production of single domains from multisubunit protein
complexes, the lack of formation of disulfide bonds which
ordinarily contribute to protein structure (320, 559), or the
absence of posttranslational modifications such as glycosyla-
tion (116) may make it impossible to attain thermodynamic
stability. Moreover, it is now clear that different types of chap-
erones normally act in concert (69, 327). Therefore, the over-
production of a single chaperone may be ineffective. For ex-
ample, the overproduction of DnaK alone resulted in plasmid

instability which was alleviated by the coproduction of DnaJ
(52). Similarly, the coexpression of three chaperone genes in E.
coli increased the solubility of several kinases (79). In some
cases, it may be necessary to coexpress chaperones cloned from
the same source as the target protein (105). Still another vari-
able to consider is growth temperature. For example, GroES-
GroEL coexpression increased the production of b-galactosi-
dase at 30 but not 37 or 428C, whereas DnaK and DnaJ were
effective at all temperatures tested (180). Finally, the overex-
pression of chaperones can lead to phenotypic changes, such as
cell filamentation, that can be detrimental to cell viability and
protein production (52).
Two recent reports have shown that the coexpression of the

human (268) or rat (433a) protein disulfide isomerase (PDI)
with the target gene enhances the yield of correctly folded
protein in the E. coli periplasm. Disulfide bond formation in

TABLE 3—Continued

Detection Applications References

Antibody Purification, detection 63, 259, 313, 446, 540
Antibody Purification, detection 251, 252, 578, 619
Biochemical assay, antibody Expression, purification, detection 101, 167, 225, 226, 462, 524

Expression, purification, detection 411, 477, 568
Expression, purification, detection 148, 230, 329, 418

Antibody, fluorescent calmodulin ligand Purification, detection 403

Antibody Expression, purification 330, 351, 591a
Biochemical assay, antibody Expression, purification, detection 181, 182, 192, 278, 472, 518, 569
Antibody Expression 19, 76, 319, 595

Purification 144, 166, 315, 459
Biochemical assay Purification, detection 307, 308

Purification 596
Expression, purification 109

Labeled biotin Detection, purification 114, 608
Antibody Purification, detection 6

Purification, detection, assay systems 484, 485
Detection, purification 410, 501

Antibody Purification, detection 392, 584, 585
Purification 281
Expression 146
Purification, refolding 61, 487, 488, 533, 534
Purification 436
Purification 436
Purification, screening peptide libraries 115, 177, 347, 354, 491

Expression 215
Expression 176, 271, 365, 380
Purification 34, 136, 358
Purification 555
Purification 244
Purification, enzyme immobilization 431, 432
Secretion into culture medium 303, 357, 528

398–400
Expression 267, 611
In vitro phosphorylation, purification 88, 300
Purification 318
Purification, reverse epitope tagginge 557

Antibody Detection, purification 582

UV light Detection 81,113, 241

a In addition to their utility in purification and detection, specific fusion peptides may confer advantages to the target protein during expression, such as increased
solubility, protection from proteolysis, improved folding, increased yield, and secretion. These advantages are denoted as Expression in the Applications column. The
engineering of specific protease sites in many fusion proteins facilitates the cleavage and removal of the fusion partner(s).
b TPEG, p-aminophenyl-b-D-thiogalactoside.
c CKS, CTP:CMP-3-deoxy-D-manno-octulosonate cytidyltransferase.
d HAI, influenza virus hemagglutinin.
e Reverse epitope tagging refers to tagging of the chromosomal rather than the plasmid-encoded protein, to avoid the need to remove the fusion partner.
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the E. coli periplasm is facilitated by a group of proteins that
maintain the correct redox potential (26). It is thought that
DsbA, a soluble periplasmic protein, directly catalyzes disul-
fide bond formation in proteins whereas DsbB, an inner mem-
brane protein, is involved in the reoxidation of DsbA (227a).
Eukaryotic PDI was capable of complementing the phenotypes
of dsbA null mutants (268, 433a), but its function was virtually
abolished in dsbB mutants (433a). In addition, the ability of
PDI to enhance the yield of target proteins was increased in
the presence of exogenously added glutathione (268, 433a).
These observations suggest that PDI depends on the presence
of bacterial redox proteins for its reoxidation. The coexpres-
sion of rat PDI has also been reported to enhance the correct
folding of tissue plasminogen activator (433a).
Protein misfolding can be attributed to the intracellular con-

centration of aggregation-prone intermediates. Thus, although
the subject of this review is the maximization of protein syn-
thesis, reducing the rate of protein synthesis should disfavor
protein misfolding. Indeed, the use of weaker promoters or
conditions of partial induction from stronger promoters can
result in larger amounts of soluble protein (180, 253).
Kadokura et al. (291) showed that the ability of E. colimutants
to secrete a large amount of alkaline phosphatase into the
periplasm was due to a lower synthetic rate of the phoA gene
product.

CODON USAGE

Genes in both prokaryotes and eukaryotes show a nonran-
dom usage of synonymous codons (214, 228, 272, 509, 623).
The systematic analysis of codon usage patterns in E. coli led to
the following observations (124). (i) There is a bias for one or
two codons for almost all degenerate codon families. (ii) Cer-
tain codons are most frequently used by all different genes
irrespective of the abundance of the protein; for example,
CCG is the preferred triplet encoding proline. (iii) Highly
expressed genes exhibit a greater degree of codon bias than do
poorly expressed ones. (iv) The frequency of use of synony-
mous codons usually reflects the abundance of their cognate
tRNAs. These observations imply that heterologous genes en-
riched with codons that are rarely used by E. coli (Table 4) may
not be expressed efficiently in E. coli.
The minor arginine tRNAArg (AGG/AGA) has been shown to

be a limiting factor in the bacterial expression of several mam-
malian genes (62), because the codons AGA and AGG are
infrequently used in E. coli (91, 95, 214). The coexpression of
the argU (dnaY) gene that codes for tRNAArg (AGG/AGA) (175,
343) resulted in high-level production of the target protein
(62). The production of b-galactosidase decreased when AGG
codons were inserted before the 10th codon from the initiation
codon of the lacZ gene (92). Similarly, Goldman et al. (204)

reported that translational inhibition of a test mRNA was
much stronger in both arginine and leucine cases when the
consecutive low-usage codons were located near the 59 end of
the mRNA. Ivanov et al. (280) reported that tandem AGG
triplets caused a substantial inhibition of gene expression in-
dependent of their localization in mRNA. These workers at-
tributed the inhibitory effect to a competition of the tandem
AGGAGG codons with the natural SD sequence. Other stud-
ies showed that protein production levels could be increased
either by substitution of high-usage codons for low-usage ones
(see, e.g., references 3, 70, 135, 145, 248, 262, 383, 452) or by
coexpression of the “rare” tRNA gene (62, 126). The expres-
sion of the ICP4 gene from herpes simplex virus was shown to
be inefficient because of the presence of an almost continuous
stretch of 19 serine residues (73). The efficiency of ICP4 syn-
thesis was not improved by silent mutations in this serine-rich
region, supplementation of the growth medium with serine,
overexpression of seryl-tRNA synthetase, or expression of
tRNASer5. The level of gene expression was inversely propor-
tional to the number of serine codons in this region (73).
Although this is certainly an extreme case, it is indicative of the
adverse effects of long stretches of similar codons on transla-
tional efficiency.
In contrast, other workers reported very efficient expression

of genes that contained low-usage codons (see, e.g., references
154, 265, 334, 464, and 616). Similarly, in the case of the human
T-cell receptor Vb5.3 gene that contains 4% AGA/AGG codons,
expansion of the intracellular pool of tRNAArg (AGG/AGA) did
not significantly increase the amount of Vb5.3 detected in the
cells (9).
The evolutionary significance of codon usage patterns, as

well as mechanistic explanations for the effects of codon usage,
has been advanced by many workers (74, 92, 124, 155, 204, 245,
276, 293, 463, 474). To date, however, it has not been possible
to formulate general and unambiguous “rules” to predict
whether the content of low-usage codons in a specific gene
might adversely affect the efficiency of its expression in E. coli.
The experimental results may be confounded by several vari-
ables, such as positional effects, the clustering or interspersion
of the rarely used codons, the secondary structure of the
mRNA, and other effects (204, 293). Nevertheless, from a
practical point of view, it is clear that the codon context of
specific genes can have adverse effects on both the quantity and
quality of protein levels. Usually, this problem can be rectified
by the alteration of the codons in question, or by the coexpres-
sion of the cognate tRNA genes.

PROTEIN DEGRADATION

Proteolysis is a selective, highly regulated process that plays
an important role in cellular physiology (200, 203, 378). E. coli
contains a large number of proteases that are localized in the
cytoplasm, the periplasm, and the inner and outer membranes
(25, 199, 201, 212, 367). These proteolytic enzymes participate
in a host of metabolic activities, including the selective removal
of abnormal proteins (201, 212). Protein damage or alteration
may result from a variety of conditions, such as incomplete
polypeptides, mutations caused by amino acid substitutions,
excessive synthesis of subunits from multimeric complexes,
posttranslational damage through oxidation or free-radical at-
tack, and genetic engineering (201). Such abnormal proteins
are efficiently removed by the bacterial proteolytic machine. To
date, the mechanisms of protein degradation are incompletely
understood, and it is unlikely that all proteolytic pathways or
enzymes operating in E. coli have been identified yet. For
example, a new protease associated with the outer membrane

TABLE 4. Low-usage codons in E. colia

Codon(s) Amino acid

AGA, AGG, CGA, CGG.............................................................. Arg
UGU, UGC..................................................................................... Cys
GGA, GGG..................................................................................... Gly
AUA................................................................................................. Ile
CUA, CUC...................................................................................... Leu
CCC, CCU, CCA............................................................................ Pro
UCA, AGU,UCG, UCC .............................................................. Ser
ACA ................................................................................................. Thr
a The reported frequency of codon usage varies depending on the author

(based on references 293, 580, and 623).
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was recently discovered (297) and a fascinating new mecha-
nism for the degradation of abnormal proteins in E. coli has
just been uncovered (299). Nevertheless, the intense scientific
interest in this area has generated new tools and strategies for
minimizing the degradation of heterologous proteins in E. coli.
Although the precise structural features that impart lability

to proteins are not known, some determinants of protein in-
stability have been elucidated. In a series of systematic studies,
Varshavsky and colleagues formulated the “N-end rule” that
relates the metabolic stability of a protein to its amino-terminal
residue (14, 15, 209, 560, 571). Thus, in E. coli, N-terminal Arg,
Lys, Leu, Phe, Tyr, and Trp conferred 2-min half-lives on a test
protein, whereas all the other amino acids except proline con-
ferred more than 10-h half-lives on the same protein (560). As
discussed above (see the section on cytoplasmic expression),
amino acids with small side chains in the second position of the
polypeptide facilitate the methionine aminopeptidase cata-
lyzed removal of the N-terminal methionine (250). Therefore,
these studies suggest that Leu in the second position would
probably be exposed by the removal of the methionine residue
and would destabilize the protein.
The second determinant of protein instability is a specific

internal lysine residue located near the amino terminus (14, 15,
86). This residue is the acceptor of a multiubiquitin chain that
facilitates protein degradation by a ubiquitin-dependent pro-
tease in eukaryotes. Interestingly, in a multisubunit protein,
the two determinants can be located on different subunits and
still target the protein for processing (287).
Another correlation between amino acid content and pro-

tein instability is presented in the PEST hypothesis (461). On
the basis of statistical analysis of eukaryotic proteins that have
short half-lives, it was proposed that proteins are destabilized
by regions enriched in Pro, Glu, Ser, and Thr, flanked by
certain amino acid residues. Phosphorylation of these PEST
domains leads to increased calcium binding, which in turn
facilitates the destruction of the protein by calcium-dependent
proteases. It was suggested that PEST-rich proteins may be
produced efficiently in E. coli, which apparently lacks the PEST
proteolytic system (461).
Strategies for minimizing proteolysis of recombinant pro-

teins in E. coli have been reviewed in detail (25, 153, 395) and
are summarized in Table 2. These include protein targeting to
the periplasm (550) or the culture medium (230), the use of
protease-deficient host strains (211), growth of the host cells at
low temperature (100), construction of N- and/or C-terminal
fusion proteins (59, 230, 319, 393), tandem fusion of multiple
copies of the target gene (512), coexpression of molecular
chaperones (489, 581), coexpression of the T4 pin gene (519–
521), replacement of specific amino acid residues to eliminate
protease cleavage sites (243), modification of the hydropho-
bicity of the target protein (394), and optimization of fermen-
tation conditions (24, 338).
Although the variety of approaches for protein stabilization

attests to the ingenuity of the investigators, the usefulness of
some of the above methods may be limited, depending on the
intended use of the recombinant protein. Thus, for example,
the presence of fusion moieties on the target protein may
interfere with functional or structural properties (51) or ther-
apeutic applications of the product. The engineering of enzy-
matic or chemical cleavage sites for the subsequent removal of
the fusion partners is a complex process that involves numer-
ous considerations: the accessibility of the cleavage sites to
enzyme digestion; the purity, specificity, and cost of the com-
mercially available enzymes; the authenticity of the N or C
termini upon enzymatic digestion; the possible modification of
the target protein upon chemical treatment, and so forth (see,

e.g., references 78, 162, 419, and 567). For the large-scale
production of fusion proteins, some of these difficulties are
amplified. Similarly, the fusion of multiple copies of the target
gene to create multidomain polypeptides (512) requires the
subsequent conversion to monomeric protein units by cyano-
gen bromide cleavage. In this case, the target protein must not
contain internal methionine residues and must be able to with-
stand harsh reaction conditions. Moreover, a limited extend of
amino acid side chain modification may occur, and the toxicity
of cyanogen bromide presents a significant issue for large-scale
cleavage reactions. Similarly, the rational modification of a
protein sequence requires extensive structural information
which may not be available. Molecular chaperones have been
used successfully to stabilize specific proteins (395), but this
approach remains a hit-or-miss affair (581).
The cytoplasm of E. coli contains a greater number of pro-

teases than does the periplasm (545, 546). Therefore, proteins
located in the periplasm are less likely to be degraded. For
example, proinsulin localized to the periplasm was 10-fold
more stable that when produced in the cytoplasm (550). How-
ever, proteolytic activity in the periplasm is substantial (367).
Secretion into the culture medium would provide a better
alternative in terms of protein stability. Unfortunately, the
technology for secretion of proteins from E. coli into the cul-
ture medium is still in its infancy (528) (see the section on
extracellular secretion, above). A major catalyst of protein
degradation in bacteria is the induction of heat shock proteins
in response to a variety of stress conditions, such as the thermal
induction of gene expression or the accumulation of abnormal
or heterologous proteins in the cytoplasm (194). Under these
conditions, the production of the lon gene product, protease
La (195), and other proteases is enhanced. This problem is
minimized by the use of host strains deficient in the rpoH
(htpR) locus (201, 211, 421). The rpoH gene encodes the RNA
polymerase s32 subunit, which regulates several proteolytic
activities in E. coli (20, 193). Hosts that carry the rpoH muta-
tion have been patented (202) and have been demonstrated to
dramatically increase the production of foreign proteins in E.
coli (see, e.g., references 4, 9, 47, 70, and 373). Strain SG21173
(211), which is deficient in proteases La and Clp and the rpoH
locus, is particularly effective in protein production (9). A large
number of protease-deficient hosts exists (see, e.g., references
23 and 211), including some that are deficient in all known
protease loci that affect the stability of secreted proteins (372).
Before leaving this section, it is worth repeating a caveat on

the use of protease-deficient strains (581): proteolysis may be
an effect rather than a cause of folding problems, serving as a
disposal system to remove misfolded and aggregated material
(238). Therefore, it is possible that the absence of proteases
will result in increased toxicity to the host as a result of the
accumulation of abnormal proteins.

FERMENTATION CONDITIONS

Protein production in E. coli can be increased significantly
through the use of high-cell-density culture systems, which can
be classified into three groups: batch, fed batch, and continu-
ous. These methods can achieve cell concentrations in excess
of 100 g (dry cell weight)/liter and can provide cost-effective
production of recombinant proteins. Detailed reviews of large-
scale fermentation systems have been published (338, 607,
614). The composition of the cell growth medium must be
carefully formulated and monitored, because it may have sig-
nificant metabolic effects on both the cells and protein produc-
tion. For example, the translation of different mRNAs is dif-
ferentially affected by temperature as well as changes in the
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culture medium (reference 284 and references therein). Nutri-
ent composition and fermentation variables such as tempera-
ture, pH and other parameters can affect proteolytic activity,
secretion, and production levels (24, 25, 153, 324, 338, 614).
Specific manipulations of the culture medium have been shown
to enhance protein release into the medium. Thus, supplemen-
tation of the growth medium with glycine enhances the release
of periplasmic proteins into the medium without causing sig-
nificant cell lysis (10, 13). Similarly, growth of cells under
osmotic stress in the presence of sorbitol and glycyl betaine
causes more than a 400-fold increase in the production of
soluble, active protein (49).
High-cell-density culture systems suffer from several draw-

backs, including limited availability of dissolved oxygen at high
cell density, carbon dioxide levels which can decrease growth
rates and stimulate acetate formation, reduction in the mixing
efficiency of the fermentor, and heat generation. The tech-
niques that are used to minimize such problems have been
examined in detail (338). A major challenge in the production
of recombinant protein at high cell density is the accumulation
of acetate, a lipophilic agent that is detrimental to cell growth
(285, 338, 353). A number of strategies have been developed to
reduce acetate formation in high-cell-density cultures, but
these suffer from several drawbacks (338). This problem was
recently resolved through the metabolic engineering of E. coli
(11, 12, 479). The alsS gene from B. subtilis encoding the
enzyme acetolactate synthase was introduced into E. coli cells.
This enzyme catalyzes the conversion of pyruvate to nonacidic
and less toxic byproducts. The reduction in acetate accumula-
tion caused a significant improvement in the production of
recombinant protein (12, 479). Mutant strains of E. coli that
are deficient in other enzymes have also been developed and
shown to produce less acetate and higher levels of human
recombinant proteins (30, 103, 273).

CONCLUSIONS AND FUTURE DIRECTIONS

An efficient prokaryotic expression vector should contain a
strong and tightly regulated promoter, an SD site that is posi-
tioned approximately 9 bp 59 to the translation initiation codon
and is complementary to the 39 end of 16S rRNA, and an
efficient transcription terminator positioned 39 to the gene
coding sequence. In addition, the vectors require an origin of
replication, a selection marker, and a gene that facilitates the
stringent regulation of promoter activity. This regulatory ele-
ment may be integrated either in the vector itself or in the host
chromosome. Other elements that may be beneficial include
transcriptional and translational “enhancers,” as well as “mi-
nicistrons” in translationally coupled systems. These may be
gene specific; therefore, their utility must be tested case by
case. The translational initiation region of a gene must be free
of secondary structures that may occlude the initiation codon
and/or block ribosome binding. UAAU is the most efficient
translation termination sequence in E. coli.
There are many different prokaryotic vectors that allow the

tight regulation of gene expression. The experimental ap-
proaches to achieve tight regulation of promoter activity range
from the simple repositioning of the operator in lac-based
systems to the construction of elaborate “cross-regulation” sys-
tems. These vectors are efficient, and each system has its own
niche in prokaryotic gene expression. The demonstrated effec-
tiveness of a thermosensitive lac repressor now allows the
thermal regulation of lac-based promoters in lieu of using
IPTG.
To date, there is no generally applicable strategy to prevent

the degradation of a wide variety of mRNA species in E. coli.

Although certain 59 and 39 stem-loop structures have been
shown to block mRNA degradation, these seem to stabilize
only specific mRNAs, under restricted conditions. One excep-
tion appears to be the 59 UTR of the E. coli ompA transcript,
which prolongs the half-life of a number of heterologous
mRNAs in E. coli. The use of strains deficient in specific
RNases has been ineffective for enhanced gene expression.
Each of the four “compartments” for targeted protein pro-

duction, i.e., the cytoplasm, periplasm, inner and outer mem-
branes, and growth medium, offers advantages and disadvan-
tages for gene expression, depending on the experimental
objectives. The formation of inclusion bodies can be minimized
by a variety of techniques, but it remains a significant barrier to
high-level protein production in the cytoplasm. To date, the
effectiveness of molecular chaperones has been protein spe-
cific. It is possible that this is due to conditions that prevent the
formation of a thermodynamically stable end product, such as
the production of severely truncated proteins or single do-
mains from multisubunit protein complexes, lack of formation
of disulfide bonds, suboptimal growth conditions, absence of
posttranslational modifications, and the normally concerted
action of multiple types of chaperones in vivo. Nevertheless,
molecular chaperones have been used very successfully for the
enhanced production of specific proteins.
The wide variety of existing fusion partners have utility in

the production, detection, and purification of recombinant
proteins. Specific fusion moieties can increase the folding, sol-
ubility, resistance to proteolysis, and secretion of recombinant
proteins into the growth medium.
Protein misfolding, attributed to the intracellular concentra-

tion of aggregation-prone intermediates, may be minimized by
a combination of experimental approaches: replacement of
amino acid residues that cause aggregation, coexpression of
molecular chaperones and foldases, reduction of the rate of
protein synthesis, the use of solubilizing fusion partners, and
the careful optimization of growth conditions.
Codon usage can have adverse effects on the synthesis and

yield of recombinant proteins. However, the mere presence of
“rare” codons in a gene does not necessarily dictate poor
translation of that gene. Currently, we do not know all the rules
that link codon usage and translation of a transcript. The lack
of consistent results in the published literature on codon usage
may be due to several variables, such as positional effects, the
clustering or interspersion of the rare codons, secondary struc-
ture of the mRNA, and other effects. Positional effects appear
to play an important role in protein synthesis. Thus, the pres-
ence of rare codons near the 59 end of a transcript probably
affects translational efficiency. This problem may be rectified
by the alteration of the culprit codons, and/or the coexpression
of the cognate tRNA genes.
Much progress has been made in the elucidation of specific

determinants of protein degradation in E. coli. Effective ap-
proaches for the minimization of proteolysis in E. coli include
the targeting of protein to the periplasm or the culture me-
dium, the use of protease-deficient host strains, the construc-
tion of fusion proteins, the coexpression of molecular chaper-
ones, the coexpression of the T4 pin gene, the elimination of
protease cleavage sites through genetic engineering, and the
optimization of fermentation conditions. Host strains that are
deficient in the rpoH (htpR) locus are among the best, partic-
ularly for thermally induced expression systems.
Future challenges in the use of E. coli for gene expression

will involve the following factors. The first is the achievement
of enhanced yields of correctly folded proteins by manipulating
the molecular chaperone machinery of the cell. Perhaps this
might be done by the coexpression of multiple chaperone-
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encoding genes or by methods that activate a large battery of
chaperone molecules in the cell.
The second is the realization of a “true” and robust secretion

mechanism for the efficient release of protein into the culture
medium. There are several available systems that facilitate
secretion of recombinant proteins into the culture medium.
Some of these are based on the use of signal peptides, fusion
partners, and permeabilizing agents that cause disruption and
limited leakage of the outer membrane. Other efforts are di-
rected at pirating existing secretion pathways that promise
greater specificity of secretion. Work in this area will necessi-
tate an improved understanding of the various secretion path-
ways in E. coli.
The third is the endowment of the prokaryotic cell with the

ability to perform some of the posttranslational modifications
found in eukaryotic proteins, such as glycosylation. This might
be done by the engineering of eukaryotic glycosylating enzymes
into the E. coli chromosome.
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Buckingham. 1994. Localization and characterization of the gene encoding
release factor RF3 in Escherichia coli. Proc. Natl. Acad. Sci. USA 91:5848–
5852.

220. Grisshammer, R., R. Duckworth, and R. Henderson. 1993. Expression of a
rat neurotensin receptor in Escherichia coli. Biochem. J. 295:571–576.

221. Gronenborn, B. 1976. Overproduction of phage lambda repressor under
control of the lac promoter of Escherichia coli. Mol. Gen. Genet. 148:243–
250.

222. Gros, F., H. Hiatt, W. Gilbert, C. G. Kurland, R. W. Risebrough, and J. D.
Watson. 1961. Unstable ribonucleic acid revealed by pulse labelling of
Escherichia coli. Nature (London) 190:581–585.

223. Gross, G., C. Mielke, I. Hollatz, H. Blöcker, and R. Frank. 1990. RNA
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435. Pérez-Pérez, J., G. Márquez, J.-L. Barbero, and J. Gutiérrez. 1994. Increas-
ing the efficiency of protein export in Escherichia coli. Bio/Technology
12:178–180.

436. Persson, M., M. G. Bergstrand, L. Bülow, and K. Mosbach. 1988. Enzyme
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