LIET 152 2nd Exam 2011. 11. 12 Dept. :	Student #: Name:	
1. Define the following terms briefly. ① rate-determining step (1 pt)	4. The reaction of CO with Cl ₂ gives phosgene (COCl ₂), a nerve gas used in World War I. Even though the stoichiometry is	
② heterogenous catalyst (1 pt)	simple, the mechanism has several steps: $Cl_2 \rightleftharpoons 2 \ Cl \qquad \qquad \text{(fast, reversible)}$ $Cl + CO \rightarrow COCl \qquad \qquad \text{(slow, rate-determining)}$ $COCl + Cl_2 \rightarrow COCl_2 + Cl \qquad \qquad \text{(fast)}$	
③ Le Chatelier's principle (1 pt)	① Show that this mechanism gives the correct overall stoichiometry. (4 pt)	
① major species (1 pt)		
⑤ conjugate acid-base pair (1 pt)	② What rate law does this mechanism predict? (4 pt)	
⑥ polyprotic acid (1 pt)		
2. For the reaction 2 A(g) + B(g) \rightarrow 3 C(g), ① Determine the expression for the rate of the reaction with respect to each of the reactants and products. (3 pt)	③ Identify any reactive intermediates in the mechanism. (5 pt	
② When A is decreasing at a rate of 0.100 M/s, how fast is B decreasing? How fast is C increasing? (3 pt)	 5. For the reaction NO + O₃ → NO₂ + O₂, the experimental rat law is Rate = k[NO][O₃]. Which of the following sets of conditions will give the fastest rate? Explain your choice. ① 0.5 mol of NO and 0.5 O₃ in a 2.0-L vessel. (3 pt) 	
3. The decomposition reaction of NOBr is second order in NOBr, with a rate constant at 20°C of $25~\text{M}^{-1}\text{min}^{-1}$. If the initial concentration of NOBr is 0.025 M, find ① the time at which the concentration will be 0.010 M. (3 pt)	2 2.0 mol of NO and 0.1 mol of O_3 in a 1.0-L vessel. (3 pt)	
	6. State the standard (reference) concentration for each substance appearing in each of the following equilibria. ① Fe ₂ O ₃ (s) + 3 CO (g) ② Fe (s) + 3 CO ₂ (g) (3 pt)	
② the concentration after 125 min of reaction. (3 pt)	② $NH_3(g) + H_3O^+(aq) \rightleftharpoons NH_4^+(aq) + H_2O(f)$ (3 pt)	
	 7. Consider the following gas-phase reaction: SO₂ (g) + Cl₂ (g) SO₂Cl₂ (g) (exothermic) Describe four changes that would drive the equilibrium to the left. (6 pt) 	

LIET 152 2nd Exam

2011. 11. 12

Dept.:

Student #:

Name:

8. Cyanic acid, HCNO, is a weak acid:

$$HCNO + H_2O \rightleftharpoons CNO^- + H_3O^+$$

The equilibrium concentration of H_3O^+ ions is 1.15 x 10^{-3} M. Evaluate $K_{eo.}$ (8 pt)

9. Using thermodynamic data given below, calculate K_{eq} for the following reaction at 298 K.º 825 K. (8 pt)

$$2 \text{ N}_2\text{O}(g) + \text{O}_2 \leftrightarrows 4 \text{ NO}(g)$$

	N ₂ O (g)	$O_2(g)$	NO (g)
$\Delta G^{\circ}_{f}(kJ/mole)$	103.7	0	87.6
ΔH° _f (kJ/mole)	81.6	0	91.3
S°(J/mol K)	220.0	205.152	210.8

10. Calculate the pH of 2.5 x 10^{-2} M solution of HClO (K = 4.0 x 10^{-8}). (8 pt)

- 11. For a solution that is 0.0100 M in NH_4NO_3 , do the following: ① Identify the major species. (3 pt)
 - 2 Identify the equilibrium that determines the pH. (3 pt)
 - ③ Compute the pH. $(K_b = 1.8 \times 10^{-5})$ (5 pt)

- 12. Answer the following:
 - 1 Among the pair of acid HBrO₃ and HBrO₂, which is stronger and why? (4 pt)
 - ② Draw Lewis structures of the acids HBrO₃ and HBrO₂, and use arrows to show electron density shifts that account for their different acid strengths. (4 pt)

- 13. Hydrazine (N_2H_4) has $K_b = 1.3 \times 10^{-6}$.
 - ① Use Lewis structures to illustrate the equilibrium reaction of $K_b.\ (4\ pt)$

 $\ \, \mbox{\ensuremath{$\mathbb{Z}$}}$ Calculate the pH of a 2.00 \times 10^{-1} M solution of $N_2H_4.$ (4 pt)

****** **** 문제 해결에 필요한 상수들 *******

- 0 K = -273.15 °C, $K_w = 1.00 \times 10^{-14}$
- 기체 상수 R = 8.314 J mol⁻¹ K⁻¹
- $\Delta G_o = \Delta H^o T\Delta S^o ; \Delta G^o = -RTlnK_{eq}$