LIE	T151 3 rd Exam	2010. 6. 12	Major:	ID:		Name:
1.	Determine Lewis species (2 points e		following	chemical	3.	Determine the molecular shape and the ideal bond angles of each of the following: (2 points each) 1) SO ₂
	2) OPCl ₃					 2) I₃+ 3) CIF₄-
	3) PBr ₅				4.	4) ICl ₄ - Name the types of attractive forces that will contribute to the interactions among atoms,
	4) N ₂ H ₄					molecules, or ions in the following substances. Indicate the one(s) you expect to predominate (2 points each).
2.	Determine Lewis sions. Include all charges, where app	resonance str	uctures an	-		 Ne KF HI
	2) SO ₃ ²⁻				5.	4) BaCl ₂ 5) H ₂ O Predict bond angles for BCl ₃ , SF ₄ and SnCl ₄ . Which of these molecules, if any, has a dipole moment? (Sn, Z=50) (4 points)
	 3) BrO₃⁻ 4) N₂O 					

LIET151 3rd Exam 2010. 6. 12 Major: ID: Name:

- 6. Arrange the following bonds in order of increasing length (shortest first) and increasing strength (weakest first). State the factors responsible for the position of each bond in your sequences: C-C, C=O, C=C, C-H, C-CI. (8 points)
- 2) Give the bond order of each species (4 points)

3) Predict which species are paramagnetic (2 points)

- 7. When one electron is added to an oxygen molecule, a superoxide ion (O_2^-) is formed. The addition of two electrons gives a peroxide ion (O_2^{-2}) . Removal of an electron from O_2 leads to O_2^+ .
 - 1) Give the molecular electron configuration for each of following species: O₂+, O₂, O₂-, O₂²⁻ (4 points)
- 8. Determine Lewis structure of CIO_3^- and CIO_2^- and describe the bonding for each of these anions including delocalized π bonds. (6 points)

LIET151 3rd Exam 2010. 6. 12 Major: ID:

- 9. Use molecular orbital diagram to explain the trend in bond energies for the following diatomic molecules: $N_2 = 942 \text{ kJ/mol}$, $O_2 = 495 \text{ kJ/mol}$, and $F_2 = 155 \text{ kJ/mol}$ (6 points).
- 11. There are nine important hydrogen-bonding interactions. One of them is O---HO. Draw the other eight (8 points).

Name:

- 10. The band gap of silicon is 105 kJ/ mol. What is the minimum wavelength of light that can promote an electron from the valence band to the construction band? (4 points)
- 12. Arrange the following liquids in order of increasing viscosity, and state the factors that determine the ranking: n-butanol $CH_3CH_2CH_2CH_2OH)$, n-pentane C_5H_{12} , propane-1,3-diol HOC_3H_6OH , and 2,2-dimethylpropane $(CH_3)_4C$ (6 points).

- 13. Draw the unit cell of the NaCl crystal and determine the number of nearest neighbors of opposite charge for each ion in this unit cell (4 points).
- 1) Use this information to sketch the phase diagram of nitrogen (6 points)

2) What is maximum pressure at which solid N_2 can sublime? (4 points)

14. The following table gives several important points on the pressure-temperature diagram of nitrogen (N_2)

	P (atm)	T (K)	
Triple point	0.123	63.15	
Critical point	33.3978	126.19	
Normal	1.0	77.35	
boiling point	1.0	//.35	
Normal	1.0	63.29	
melting point	1.0	03.29	

 $h = 6.626 \times 10^{-34} \text{ J s}$

 $c = 3.00 \times 10^8 \text{ m s}^{-1}$

 $N_A = 6.022 \times 10^{23}$