LIET 151 2nd Exam 2011.5 .14 Dept: ID\#: Name:

1. Define the following terms briefly. (each 2 pt)
(1) ideal gas:
(2) state function:
(3) enthalpy:
(4) uncertainty principle:
(5) lattice energy:
(6) Gouy balance:
2. A sample of air was compressed to a volume of 20.0 L . The temperature was 298 K and the pressure was 10.00 atm . How many moles of gas were in the sample? If the sample has been collected from air at $\mathrm{P}=1.50 \mathrm{~atm}, \mathrm{~T}=298 \mathrm{~K}$, what was the original volume of the gas? (5 pts)
3. What is the density $(\mathrm{g} / \mathrm{L})$ of SF_{6} gas at 700 torr and $27^{\circ} \mathrm{C}$? $\left(\mathrm{MM}_{\mathrm{SF6}}=146.05 \mathrm{~g} / \mathrm{mol}\right)(5 \mathrm{pts})$
4. How much does the partial pressure of N_{2} gas in the atmosphere change at $30^{\circ} \mathrm{C}$ and 1.00 atm as the relative humidity varies from zero to 100% ? $\left(X_{N 2}=0.7808\right.$ at 0% humidity; vp of $\mathrm{H}_{2} \mathrm{O}$ at $30^{\circ} \mathrm{C}=31.824$ torr) (6 pts)
5. In an explosion, a compound that is a solid or a liquid decomposes very rapidly, producing large volumes of gas. The force of the explosion results from the rapid expansion of the hot gases. For example, TNT (trinitrotoluene) explodes as follows:
$2 \mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3}(\mathrm{~s}) \rightarrow 12 \mathrm{CO}(\mathrm{g})+2 \mathrm{C}(\mathrm{s})+5 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{~N}_{2}(\mathrm{~g})$
(a) How many moles of gas are produced in the explosion of 1.5 kg of TNT? $\left(M M_{\mathrm{TNT}}=227.14 \mathrm{~g} / \mathrm{mol}\right)(3 \mathrm{pts})$
(b) What volume will these gases occupy if they expand to a total pressure of 1.0 atm at $25^{\circ} \mathrm{C}$? (3 pts)
6. Each of the following is placed in an ice bath until it has lost 65.0 J of energy. Compute the final temperature in each case: (each 2 pts)
(a) $60.0-\mathrm{g}$ sample of $\mathrm{H}_{2} \mathrm{O}$ originally at $32.5^{\circ} \mathrm{C}\left(M M_{\mathrm{H} 2 \mathrm{O}}=18.02\right.$ $\left.\mathrm{g} / \mathrm{mol} ; C_{\mathrm{H} 20}=75.291 \mathrm{~J} /\left(\mathrm{mol}{ }^{\circ} \mathrm{C}\right)\right)$
(b) $40.0-\mathrm{g}$ block of Al originally at $65.0^{\circ} \mathrm{C}\left(\mathrm{MM}_{\mathrm{Al}}=26.98 \mathrm{~g} / \mathrm{mol}\right.$; $\left.\mathrm{C}_{\mathrm{Al}}=24.35 \mathrm{~J} /\left(\mathrm{mol}{ }^{\circ} \mathrm{C}\right)\right)$
7. A $1.35-\mathrm{g}$ sample of caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} ; M M_{\text {caffeine }}=194.2\right.$ $\mathrm{g} / \mathrm{mol}$) is burned in a constant volume calorimeter that has a heat capacity of $7.85 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The temperature increases from 24.65 to $30.00^{\circ} \mathrm{C}$. Determine the amount of heat released and the molar energy of combustion of caffeine. (6 pts)
8. What is the speed (in miles per hour) of a $60-\mathrm{kg}$ runner whose kinetic energy is 345 J ? (5 pts)
LIET 151 2nd Exam 2011.5 .14 Dept: ID\#: Name:
9. A coin dealer, offered a rare silver coin, suspected that it might be a counterfeit nickel copy. The dealer heated the coin, which weighed 15.5 g , to $100.0^{\circ} \mathrm{C}$ in boiling water and then dropped the hot coin into 21.5 g of water at $\mathrm{T}=15.5^{\circ} \mathrm{C}$ in a coffee-cup calorimeter. The temperature of the water rose to $21.5^{\circ} \mathrm{C}$. Was the coin made of silver or nickel? (6 pts) $\left(M M_{\mathrm{H} 20}=18.02 \mathrm{~g} / \mathrm{mol} ; \quad C_{\mathrm{H} 2 \mathrm{O}}=75.291 \mathrm{~J} /\left(\mathrm{mol}{ }^{\circ} \mathrm{C}\right) ; \quad \mathrm{C}_{\mathrm{Ag}}=25.351 \mathrm{~J} /(\mathrm{mol}\right.$ $\left.\left.{ }^{\circ} \mathrm{C}\right) ; C_{\mathrm{Ni}}=26.07 \mathrm{~J} /\left(\mathrm{mol}{ }^{\circ} \mathrm{C}\right)\right)(6 \mathrm{pts})$
10. When light of frequency of $1.30 \times 10^{15} \mathrm{~s}^{-1}$ shines on the surface of cesium metal, electrons are ejected with a maximum kinetic energy of $5.2 \times 10^{-19} \mathrm{~J}$. Calculate (a) the wavelength of this light; (3 pts)
(b) the binding energy of electrons to cesium metal; (3 pts)
11. If you know that an electron has $m_{l}=-2$, what are the possible values for its other quantum numbers? (5 pts)
12. The human eye can detect as little as $2.35 \times 10^{-18} \mathrm{~J}$ of green light of wavelength 510 nm . Calculate the minimum number of photons that can be detected by the human eye. (6 pts)
13. Make a sketch of the 1 s and 2 p orbitals. How would the 2 s and 3 p orbitals differ from the 1 s and 2 p orbitals? (6 pts)
14. For each pair of orbitals, determine which is more stable and explain why: (each 2pts)
(a) He 2 s and $\mathrm{He}^{+} 2 \mathrm{~s}$
(b) C 2 s and C 2 p
15. The ground state of ${ }^{23} \mathrm{~V}$ has lower spin than that of ${ }^{24} \mathrm{Cr}$. Construct energy level diagrams for the valence electrons that show how electron configurations account for this difference. (6 pts)
16. Show thee ground-state electron configuration of two transition metal cations; ${ }^{29} \mathrm{Cu}^{2+}$ and ${ }^{24} \mathrm{Cr}^{3+}$. (each 3 pts)

17. Pick the larger species from each of the following pairs: (each 2 pts)
(a) ${ }^{3} \mathrm{Li}$ or ${ }^{3} \mathrm{Li}^{+}$
(b) ${ }^{53} \mathrm{I}^{-}$or ${ }^{55} \mathrm{Cs}^{+}$
(c) ${ }^{8} \mathrm{O}$ or ${ }^{8} \mathrm{O}^{2-}$
$\mathrm{R}=8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J}$ s
$\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
