LIET 151 2nd Exam 2011.5.14 Dept:	ID#: Name:
 Define the following terms briefly. (each 2 pt) ideal gas: 	5. In an explosion, a compound that is a solid or a liquid decomposes very rapidly, producing large volumes of gas. The force of the explosion results from the rapid expansion of the hot gases. For example, TNT (trinitrotoluene) explodes as
② state function:	follows: $2C_7H_5(NO_2)_3(s) \rightarrow 12CO(g) + 2C(s) + 5H_2(g) + 3N_2(g)$ (a) How many moles of gas are produced in the explosion of
③ enthalpy:	1.5 kg of TNT? (<i>MM</i> _{TNT} = 227.14 g/mol) (3 pts)
④ uncertainty principle:	
⑤ lattice energy:	(b) What volume will these gases occupy if they expand to a total pressure of 1.0 atm at 25° C? (3 pts)
6 Gouy balance:	
2. A sample of air was compressed to a volume of 20.0 L. The temperature was 298 K and the pressure was 10.00 atm. How many moles of gas were in the sample? If the sample has been collected from air at P=1.50 atm, T=298 K, what was the original volume of the gas? (5 pts)	 6. Each of the following is placed in an ice bath until it has lost 65.0 J of energy. Compute the final temperature in each case: (each 2 pts) (a) 60.0-g sample of H₂O originally at 32.5°C (<i>MM</i>_{H2O}=18.02 g/mol; C_{H2O}=75.291 J/(mol °C))
3. What is the density (g/L) of $\rm SF_6$ gas at 700 torr and 27°C? (MM_{SF6}=146.05 g/mol) (5 pts)	(b) 40.0-g block of Al originally at 65.0°C (MM _{Al} =26.98 g/mol; $C_{\rm Al}{=}24.35$ J/(mol °C))
4. How much does the partial pressure of N ₂ gas in the atmosphere change at 30°C and 1.00 atm as the relative humidity varies from zero to 100%? ($X_{N2} = 0.7808$ at 0% humidity; vp of H ₂ O at 30°C=31.824 torr) (6 pts)	7. A 1.35-g sample of caffeine ($C_8H_{10}N_4O_2$; <i>MM</i> _{caffeine} =194.2 g/mol) is burned in a constant volume calorimeter that has a heat capacity of 7.85 kJ/°C. The temperature increases from 24.65 to 30.00°C. Determine the amount of heat released and the molar energy of combustion of caffeine. (6 pts)
	8. What is the speed (in miles per hour) of a 60-kg runner whose kinetic energy is 345 J? (5 pts)

LIET 151 2nd Exam 2011.5.14 Dept:	ID#: Name:
9. A coin dealer, offered a rare silver coin, suspected that it might be a counterfeit nickel copy. The dealer heated the coin, which weighed 15.5 g, to 100.0°C in boiling water and then dropped the hot coin into 21.5 g of water at T= 15.5°C in a coffee-cup calorimeter. The temperature of the water rose to 21.5°C. Was the coin made of silver or nickel? (6 pts) $(MM_{\rm H2O}=18.02 \text{ g/mol}; C_{\rm H2O}=75.291 \text{ J/(mol °C)}; C_{\rm Ag}=25.351 \text{ J/(mol °C)}; C_{\rm Ni}= 26.07 \text{ J/(mol °C)})$ (6 pts)	13. Make a sketch of the 1s and 2p orbitals. How would the 2s and 3p orbitals differ from the 1s and 2p orbitals? (6 pts)
	 14. For each pair of orbitals, determine which is more stable and explain why: (each 2pts) (a) He 2s and He⁺ 2s
	(b) C 2s and C 2p
 10. When light of frequency of 1.30 x 10¹⁵ s⁻¹ shines on the surface of cesium metal, electrons are ejected with a maximum kinetic energy of 5.2 x 10⁻¹⁹ J. Calculate (a) the wavelength of this light; (3 pts) 	15. The ground state of ²³ V has lower spin than that of ²⁴ Cr. Construct energy level diagrams for the valence electrons that show how electron configurations account for this difference. (6 pts)
(b) the binding energy of electrons to cesium metal; (3 pts)	
11. If you know that an electron has m ₁ = -2, what are the possible values for its other quantum numbers? (5 pts)	 16. Show thee ground-state electron configuration of two transition metal cations; ²⁹Cu²⁺ and ²⁴Cr³⁺. (each 3 pts) (a) Cu²⁺ [Ar] 4s 3d (b) Cr³⁺ [Ar] 4s 3d 17. Pick the larger species from each of the following pairs: (each 2 pts) (a) ³Li or ³Li⁺
12. The human eye can detect as little as 2.35×10^{-18} J of green light of wavelength 510 nm. Calculate the minimum number of photons that can be detected by the human eye. (6 pts)	(b) ${}^{53}\text{I}^-$ or ${}^{55}\text{Cs}^+$ (c) ${}^{8}\text{O}$ or ${}^{8}\text{O}^{2-}$ ************************************