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Reconstructing a protein in three dimensions from its backbone
torsion angles is an ongoing challenge because minor inaccuracies
in these angles produce major errors in the structure. As a familiar
example, a small change in an elbow angle causes a large displace-
ment at the end of your arm, the longer the arm, the larger the
displacement. Even accurate knowledge of the backbone torsions
� and � is insufficient, owing to the small, but cumulative,
deviations from ideality in backbone planarity, which, if ignored,
also lead to major errors in the structure. Against this background,
we conducted a computational experiment to assess whether
protein conformation can be determined from highly approximate
backbone torsion angles, the kind of information that is now
obtained readily from NMR. Specifically, backbone torsion angles
were taken from proteins of known structure and mapped into 60°
� 60° grid squares, called mesostates. Side-chain atoms beyond the
�-carbon were discarded. A mesostate representation of the pro-
tein backbone was then used to extract likely candidates from a
fragment library of mesostate pentamers, followed by Monte
Carlo-based fragment-assembly simulations to identify stable con-
formations compatible with the given mesostate sequence. Only
three simple energy terms were used to gauge stability: molecular
compaction, soft-sphere repulsion, and hydrogen bonding. For the
six representative proteins described here, stable conformers can
be partitioned into a remarkably small number of topologically
distinct clusters. Among these, the native topology is found with
high frequency and can be identified as the cluster with the most
favorable energy.

protein structure � protein secondary structure � protein fragment
assembly � Monte Carlo simulation

Protein molecules are known to undergo a reversible disorder
^ order transition (1). In the classical view, the unfolded

state is thought to be a structurally featureless ensemble that
adopts its native structure spontaneously and uniquely under
conditions that favor folding. For many small proteins of bio-
physical interest, this well studied folding reaction is apparently
a two-state process. Accordingly, it can be represented by the
equation: U(nfolded) ^ N(ative), with equilibrium constant,
Keq � N�U, and free energy, �G0 � �RT ln Keq, the free energy
difference between the two populations. Central to this view, U
is thought to be largely comprised of randomly coiled molecules,
and N is thought to be largely comprised of uniquely structured
molecules.

Lately, we have been exploring the doubly divergent alterna-
tive view that the unfolded state is more organized (2) and the
folded state is less homogeneous (3) than previously thought. If
so, then both states can be treated productively as constrained
thermodynamic ensembles. Numerous recent papers suggest
that the unfolded population is not featureless, despite the fact
that it does indeed exhibit random-coil statistics (4). Based on
residual dipolar couplings from NMR, Shortle (5) and Shortle
and Ackerman (6) have argued that the denatured state retains
native-like topology, although not all agree (7–9). Another
hypothesis regards unfolded proteins as fluctuating ensembles of
polyproline II helix (10–18).

Our recent work indicates that steric clash (19) and hydrogen
bonding (20, 21) promote organization in proteins, effectively
eliminating many conceivable random-coil conformers (22, 23).
These two organizing factors influence folded and unfolded
states alike. Consistent with this conclusion, the coil library (24),
a subset of the folded population, is hypothesized to represent
the unfolded population (25). More often than not, a pro-
nounced bias toward native-state secondary structure can be
detected in the local amino acid sequence by Monte Carlo
simulations that emphasize sterics and hydrogen bonding (26).
Even random-coil statistics (27), long taken to be the hallmark
of the unfolded state (28), do not preclude the possibility that the
unfolded state is far from featureless (29). All of these lines of
evidence converge on the idea that the unfolded state is more
organized than previously thought.

Here, we shift our focus to the native state and attempt to
assess heterogeneity in the folded population. Starting with a
highly approximate backbone conformation, such as might be
available from NMR or calculated biases, we use a Monte Carlo
algorithm to produce compact chain conformations subject to
three simple filters involving (i) global compaction, (ii) steric
exclusion, and (iii) hydrogen bonding. Conceptually, our algo-
rithm seeks to maximize backbone hydrogen bonding, subject to
the constraint that the resultant structure is compact, but not
unrealistically so. Successful folds elaborated in this way are then
clustered by structural criteria, not by energy, and the clusters
are enumerated and classified. Our approach is deliberately
reminiscent of early work of Richards and coworkers (30).

Surprisingly, only a small number of clusters is probable under
these simple constraints. Usually, though not invariably, the
largest cluster corresponds to the native state. The algorithm
operates solely on the backbone, where it is presumed that
conformational biases are largely exerted via local side-
chain:backbone interactions (ref. 26 but see also ref. 31). Our
results suggest that under folding conditions an ensemble of
realistically biased protein chains will self-organize into a small
number of distinct clusters, each with a large number of ther-
modynamically, and probably structurally, similar conformers.
Together, these several clusters are expected to cover the major,
thermodynamically accessible population.

In our approach, �,�-space is partitioned into a uniform,
labeled grid of 36 squares, each 60° � 60° (Fig. 1), a discretized
version of dipeptide map (32). Every square, termed a me-
sostate, corresponds to a coarse-grained value of a �,�-pair,
and therefore a linear string of mesostates is a highly approx-
imate description of a protein’s 3D structure. By adopting this
mesostate representation, our inquiry can be focused into the
specific question: can native protein topology be rebuilt solely
from the mesostate sequence, without prior knowledge of
bond lengths and angles or side-chain identity? This question
is of considerable practical interest because approximate
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torsion angles can be obtained directly from NMR spectros-
copy in the form of chemical shifts and residual dipolar
couplings (33, 34).

Methods
Even with accurate backbone torsion angles (� and �), rebuild-
ing a protein in three dimensions is a nontrivial task (35), owing
to the small, but cumulative, deviations from ideality in back-
bone planarity (i.e., �-angles), bond lengths, and scalar angles.
The method used here is outlined in Fig. 2 and individual steps
are described below.

Fragment Library Construction. A protein list of 4,341 chains with
sequence identity �40%, resolution �2.5 Å, and R factor of 20 or
better was downloaded from the PISCES server (36) and split into all
possible overlapping five-residue fragments, 873,352 in all. Frag-
ment lists sorted by backbone torsion angles, mesostate sequence,
and secondary structure sequence were generated and stored for
later use. Secondary structure assignments were made by using
PROSS (26), which maps backbone dihedral angles into mesostates
(Fig. 1) and then assigns each residue within a sequence of
mesostates to one of five secondary structure categories: T(urn),
H(elix), E(xtended), P(olyprolineII), or C(oil).

Generation of 3D coordinates from a mesostate sequence is
an iterative process of selecting suitable candidate fragments
and assembling them into a coherent structure. For each
protein under consideration, a total of 25,000 viable structures
was generated in each of 10 parallel simulations, followed by
clustering and analysis of a randomly selected representative
subset.

Fragment Replacement Criteria. Starting conformation. Initially, a
fully extended polypeptide chain with ideal bond lengths and
angles was constructed by using the ribosome package in LINUS
(37). Side chains were omitted; residues were modeled as alanine
unless the given mesostate was sterically inaccessible to alanine,
in which case it was modeled as glycine.
Fragment selection. To replace a five-residue fragment within a
target mesostate sequence, candidates for substitution were
selected from the fragment library. Library fragments with the
identical mesostate sequence were given precedence, but when
the set of identities was too small (�10 members), fragments
with a similar mesostate sequence were used instead (i.e., at least
three of the five corresponding mesostates were identical). Upon
selection, eligible candidates were filtered to remove any frag-
ments from homologous protein chains or any fragments having

a secondary structure sequence that failed to match the target
chain.
Fragment replacement. Five-residue library fragments were se-
lected at random as described. Replacing a target sequence
fragment by an eligible library fragment entailed changing the
backbone torsion angles of the target sequence, residue by
residue. If the mesostates of the library and target residues were
identical, the torsion angles of the target residue were replaced
by the torsion angles of the corresponding library residue.
However, if the library and target residue mesostates differed,
mesostate-constrained random values for the target residue were
generated so as to preserve the native mesostate. Specifically,
replacement torsions were generated by varying the original
�,�-angles by �5° for helix and turn residues or �10° for other
residues, and by varying the original �-angle by �2° for all
residues. Allowing torsion angles to vary in this way can com-
pensate for restraints imposed by the use of ideal bond lengths
and angles (35).

Fragment Assembly by Monte Carlo Simulation with Simulated An-
nealing. A Metropolis Monte Carlo simulation (38) of 50,000
cycles was then performed on this target chain, preceded by
5,000 relaxation cycles, where each cycle consisted of n-4 steps
for a chain of length n. At each step, a randomly chosen
five-residue segment of the target peptide was replaced by a
randomly chosen library fragment, as described above. The
relaxation phase allowed the initially extended chain to settle
into a mesostate-compatible conformation. The subsequent
simulation was divided into 25,000 equilibration cycles followed
by 25,000 cycles during which the chain can explore low energy
conformations, using the Metropolis-based energy function de-
scribed next.

Energy Function. The Metropolis criterion was applied by using an
energy function with three simple terms: (i) steric exclusion
(Esoft�debump), (ii) hydrogen bonding (EHB), and (iii) global com-
paction (Econfine).
Soft-debump potential Esoft�debump. A soft-debump potential was used
to capture steric repulsion between two atoms, a and b.
Esoft�debump is a soft-sphere potential, Esoft�sphere, when the inter-
atomic distance between atoms does not exceed the sum of their
van der Waals radii (23) and a hard-sphere potential beyond this
distance (13). Specifically,

Esoft_debump(a, b) � � Esoft_sphere(a, b), da,b � ra � rb,
0, da,b � ra � rb

Fig. 1. Backbone �,�-space for a dipeptide was subdivided into 36 alpha-
betically labeled, 60° � 60° grid squares, called mesostates. A residue’s me-
sostate is a very coarse-grained representation of its backbone conformation
(ref. 26 and Table 1). Fig. 2. Flowchart of individual steps (fragment searching and replacement,

structure generation, evaluation, and clustering) as described in Methods.
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Esoft_sphere(a, b) � 0.25 � �	ra � rb
�da,b�
12,

where da,b is the distance between atoms a and b and ra and rb
are the van der Waals radii for atoms a and b, respectively.
Hydrogen-bond potential EHB. We use an orientation-dependent
hydrogen-bond potential (39, 40), with an energy proportional
to 	HB when geometric criteria are satisfied (39), and 0
otherwise. A proportionality constant that distinguishes be-
tween local (�4 residues between donor and acceptor) and
long-range (�4 residues between donor and acceptor) hydro-
gen bonds is applied to favor long-range interactions: 	short �
1.0 	HB and 	long � 2.0 	HB.
Confinement potential Econfine. A confinement potential, imple-
mented as a function of radius of gyration, was applied to capture
solvent-squeezing effects:

Econfine � �	Rg 
 R0

2, Rg � R0,

0, Rg � R0

where Rg is the radius of gyration of the current conformation,
and R0 is a threshold value. A value of R0 � 2.83 � N0.34, close
to that predicted by theory (28), was obtained empirically by
best-fitting the calculated radius of gyration vs. protein length by
using high-resolution crystal structures in the Protein Data Bank

(41), as illustrated in Fig. 3. This value was deliberately relaxed
to R0 � 2.83 � N0.40 during the initial 5,000 cycles so as to
promote local secondary structure formation.

Table 1. Protein test set

Protein Data
Bank ID Molecule name Classification Length, nt

Proteins used in this study
2GB1 Protein G domain B �� 56
1UBQ Ubiquitin �� 76
1C9OA Cold shock protein,

chain A
All � 66

1IFB Intestinal fatty acid
binding protein

All � 131

1VII Villin head piece All  36
1R69 434 Repressor All  63

Additional proteins
1GHHA DNA damage inducible

protein I
�� 81

1BTB Barstar �� 76
1SHG -Spectrin All � 62
4GCR(1–85) �-B crystallin All � 85
1ENH Engrailed

homeodomain
All  54

4ICB Calbindin All  76

Fig. 3. Two functions of the radius of gyration (Rg) vs. protein length (N),
used as confinement potentials in Methods. Functions were calculated as
best-fit curves to the observed Rg for 337 nonhomologous, x-ray elucidated
proteins (E), using the Flory relationship (52), Rg � RoN�, as the functional
form of the curve. The best-fit curve (solid line) has � � 0.34, as expected for
a self-avoiding polymer in poor solvent. A relaxed function (dashed line) with
� � 0.40 was used in the initial relaxation stage of the simulation.

Fig. 4. Stereoviews showing the most stable conformation (red) from simula-
tions superimposed on its corresponding native conformation (green): Protein
Data Bank ID codes 2GB1 (A), 1UBQ (B), 1C9OA (C), 1IFB (D), 1VII (E), and 1R69 (F).
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Clustering. The conformational ensemble for each protein was
represented by 500 conformations chosen as every 500th struc-
ture from each of the 10 parallel simulations. At this sampling
interval, successive structures are expected to be uncorrelated.
This ensemble was clustered by using a slightly modified version
of CLUSTER 3.0 (42), based on a score that combines the -carbon
distance matrix and differences in torsion angles. Clusters with
a similarity coefficient �70% that spanned �10% of all con-
formations were retained for further analysis, and their energy
distributions and rms deviation (rmsd) from the native structure
were computed.

Our results are insensitive to the particular choice of clustering
algorithm. However, the strategy of clustering by structure, not
energy, was crucial.

Test Protein Set. The method was tested on multiple proteins. Six
representative examples are described here, including two all-
proteins, two all-� proteins, and two ��-proteins (Table 1).
Additional examples not studied here are shown in Table 1. For
each protein, the mesostate sequence was obtained by mapping
torsion angles into mesostates (Fig. 1), but no other information
from the 3D structure was used in these simulations.

Results
For each of the six representative proteins described here, the
lowest energy conformation closely resembles its experimentally
determined counterpart (Fig. 4). This visual impression is cor-
roborated by the low rmsds between the two corresponding
structures (Table 2). Successful simulation was achieved despite
the use of coarse-grained backbone angles, the crude energy
function, and omission of side chains. Thus, with only these
simple energetic criteria, the method was sufficient to discover
the native topology in each case listed in Table 1.

Agreement between the lowest energy conformer and the
native topology is not merely fortuitous, as is evident from the
clustered ensembles in Table 3. For each protein, only a few
topologically coherent clusters are sufficient to encompass al-
most the entire population. In each case, the cluster of lowest
energy (bold rows in Table 3) has the lowest rmsd from the native
structure. Often, but not invariably, it is also the largest cluster.
Regardless, the combination of clustering by structure and then
identifying the cluster of lowest energy is sufficient to discover
the native topology.

The distributions of simulation energy vs. rmsd were plotted for
all 500 sampled conformers in each protein (Fig. 5). Consistent with
the observed agreement between energy and native structure in
Table 3, these energies either increase monotonically with rmsd or
form a single clump, with the sole exception of fatty acid-binding
protein (see below). Significantly, the hydrogen-bond potential
alone, the only protein-specific term among the three, tracks with
the total simulation energy, as seen in Fig. 5.

The energy vs. rmsd distribution for fatty acid-binding protein
(Fig. 5) requires special mention. In this case, conformations
centered around both 3.0 and 7.0 Å rmsd have similar energies.
However, detailed examination of the clusters confirms that both
clumps maintain native topology.

Simulations of each protein took between 1 and 2 weeks on a
single-processor 2.53-GHz Intel (Santa Clara, CA) Pentium

Table 2. Backbone rmsd of the most stable conformation

Protein Data
Bank ID code rmsd, Å

2GB1 1.11
1UBQ 1.81
1C90A 1.38
1IFB 3.05
1VII 3.78
1R69 4.49

Table 3. Topological clusters from each ensemble

Protein
Data Bank
ID code Cluster Size* rmsd, Å† Energy‡

Hydrogen-bond
potentia§

2GBI I 344 1.73 � 0.36 �56.28 � 2.75 �28.40 � 1.31
II 154 2.21 � 0.37 �56.12 � 2.84 �28.18 � 1.35

1UBQ I 295 3.13 � 0.70 �62.00 � 2.82 �31.22 � 1.39
II 74 8.70 � 0.27 �59.42 � 3.42 �29.94 � 1.62
III 104 5.08 � 0.44 �60.01 � 2.01 �30.20 � 0.89

1C9OA I 282 2.32 � 1.04 �54.63 � 0.54 �27.51 � 1.76
II 50 6.20 � 0.12 �52.18 � 1.69 �26.51 � 0.74
III 50 10.58 � 0.34 �43.12 � 2.59 �21.95 � 1.69
IV 50 8.84 � 0.24 �42.46 � 1.26 �21.63 � 0.42

1IFB I 62 7.12 � 0.78 �141.08 � 4.14 �73.56 � 1.94
II 188 4.30 � 0.58 �138.41 � 3.17 �69.87 � 1.38
III 50 2.99 � 0.05 �144.50 � 1.92 �72.38 � 0.94
IV 50 9.17 � 0.15 �140.95 � 2.11 �71.49 � 0.99

1VII I 400 3.72 � 0.30 �34.24 � 2.59 �17.22 � 1.28
II 75 4.10 � 0.81 �25.84 � 1.77 �13.06 � 0.85

1R69 I 98 5.22 � 0.58 �62.14 � 2.92 �31.26 � 1.46
II 54 4.24 � 1.12 �62.75 � 3.54 �31.54 � 1.74
III 157 5.47 � 1.05 �60.68 � 3.26 �30.51 � 1.60

For each protein, 500 conformers were selected and clustered (500 from each of 10 parallel simulations, as
described in Methods). Almost all of them can be classified into only a few structurally similar clusters. The
lowest-energy cluster is in bold in each case.
*Number of structures in the cluster.
†Average rmsd (�SD) from the native structure for the cluster.
‡Average total simulation energy (�SD) for the cluster.
§Average hydrogen-bond energy (�SD) for the cluster.
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processor (i.e., a desktop Unix box) but less than half a day on
a 48-node computer farm.

Discussion
Anfinsen’s hypothesis (1) established the fundamental relationship
between thermodynamics and structure for protein molecules, and
since then, the field has sought an energy function that is sufficient
to calculate the native conformation. Remarkably, the crude,
three-term energy function used here achieves this long-standing
goal in simulations of mesostate-constrained conformers. Why?

Our simulations demonstrate that the number of thermody-
namically viable clusters consistent with native mesostates is
limited. Seemingly, this result is surprising because each �,�-pair
in a mesostate sequence can assume a large range of values (60°
� 60°), suggestive of numerous possible topologies. However,
most putative topologies are not feasible, either owing to steric
clash (23) or the failure of backbone polar groups to satisfy their
hydrogen-bonding requirements (20). Systematic steric clash is
quite local, between atoms within six residues of each other in the
linear sequence (2), effectively eliminating most topologies that
would otherwise be compatible with a specific mesostate se-
quence (19, 43).

This realization is the basis for the choice of terms in our
energy potential: molecular compaction, soft-sphere repul-
sion, and hydrogen bonding. The first two terms are nonspe-
cific and were chosen to capture the high packing density of
proteins (44) while avoiding steric violations (19, 32). Hydro-
gen bonding is the only protein-specific term, and it plays a
central role in protein folding (20, 21, 45) and the dominant
role in our simulations (Fig. 5).

With the exception of Esoft�debump, the potentials used here are
fitted terms that lack meaningful reference energies, and con-
sequently units have been omitted. However, EHB, which tracks
with the total energy, is just a count of local and long-range
hydrogen bonds, as described in Methods, and this quantity is
plotted in Fig. 5.

Returning now to the question of how these three criteria are
sufficient to identify the native cluster, numerous misfolded
conformations having native-like energies are eliminated effec-
tively by restricting the ensemble to conformers with native
mesostates. Among those surviving, the lowest energy compact,
clash-free, hydrogen-bonded cluster is the native one.

Given the fact that most systematic steric clash is local (2, 23),
fragment-assembly Monte Carlo simulation is an attractive
strategy for discovering the native topology. Database fragments

Fig. 5. Simulation energy (red) vs. rmsd from the native structure for 500 conformers in the six simulated ensembles: Protein Data Bank ID codes 2GB1 (A), 1UBQ
(B), 1C9OA (C), 1IFB (D), 1VII (E), and 1R69 (F). Notably, the native clump has the lowest energy. Importantly, the energy is dominated by the hydrogen-bond score
(green) that tracks with the total simulation energy almost exactly.
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excised from experimental structures are intrinsically clash-free
and locally energy-minimized (43, 46). Accordingly, fragment
assembly is the most effective current method for protein
structure prediction (47), and it has been used with impressive
success in the ROSETTA program, developed by Baker and
colleagues (48–51).

In summary, for the six proteins studied here, our fragment-
assembly Monte Carlo algorithm successfully identified the
native backbone topology solely from its mesostate sequence.
Presumably, the addition of side chains would further bias the
distribution toward the native topology. In all cases, that topol-
ogy corresponds to the lowest energy structure, using a simple,

three-term potential involving molecular compaction, steric
repulsion, and hydrogen bonding. Remarkably, the hydrogen-
bond potential alone closely tracks the total energy. Our algo-
rithm was developed with an eye toward the practical problem
of solving 3D structures from NMR data by mapping chemical
shifts and�or residual dipolar couplings onto mesostates (33, 34).
Initial results indicate that ubiquitin can be solved in this way
(data not shown).
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